
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reportmg burden for th1s collection of mformation is estimated to average 1 hour per response. includmg the time for rev>ewing instruct>ons. searclhing existing data sources. gathering and
mmnta1mng the data needed. and completing and rev1ew1ng the collection of 1nforma t1 on. Send comments regarding th1s burden est1mate or any other aspect o fth1s collection of mformat1on . 1nclud1ng
suggestions for reduc1ng the burden. to the Department of Defense. ExecutiVe Serv1ce D>rectorate (0704-0188) Respondents should be aware that notwithstanding any other prov1s1on of law. no
person shall be sub;ect to any penalty for fall ing to comply w1th a collect>on of 1nformat1on if 1t does not display a currently valid OMB control number

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY) 12. REPORT TYPE 3. DATES COVERED (From- To)

29-02-2012 Final performance report 1-farch 2009 --Feb. 2012

4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

Joint Information Theoretic and Differential Geometrical Approach for Robust
Automated Target Recognition

Sb. GRANT NUMBER

F A9550-09-l-0132

Sc. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) Sd. PROJECT NUMBER
DapengWu

00075874

Se. TASK NUMBER

Sf. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Electrical & Computer Engmeering REPORT NUMBER

University of Florida
Gainesville, Florida 32611-6130

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

USAF,AFRL
AF OFFICE OF SCIENTIFIC RESEARCH

875 N. RANDOLPH ST. ROOM 3112 11. SPONSOR/MONITOR'S REPORT

ARLINGTON, VA 22203 NUMBER(S)

AFRL-OSR-VA-TR-2012-0357

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The overall objective of this project is to develop transformative theory and algorithms for robust Automated Target Recognition (ATR). This
project addressed the following challenging problems in ATR: modeling uncertainty, small sample size, high dimensional data, irrelevant
features/dimensions, heterogeneous data, and outliers. In this project, the PI proposed and developed the following new techniques:
1) kernel local feature extraction (KLFE) for ATR applications, 2) technique for identifying network dynamics under sparsity and stationarity
constraints, 3) self-organized-queue-based (SOQ) clustering scheme, 4) robust principal component analysis (RPCA) based on manifold
optimization, outlier detection, and subspace decomposition.

1S. SUBJECT TERMS

Feature extraction, clustering, identification of network dynamics, robust principal component analysis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT

u u u uu

18. NUMBER
OF
PAGES

62

19a. NAME OF RESPONSIBLE PERSON

DapengWu

19b. TELEPHONE NUMBER (Include area code)

Reset

352-392-4954

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std Z39 18

Adobe Professional 7.0

Air Force Office of Scientific Research Grant FA9550-09-1-0132:

Joint Information Theoretic and Differential Geometrical
Approach for Robust Automated Target Recognition

(Performance Period: March 2009 – February 2012)

Final Report

PI: Dapeng “Oliver” Wu

Department of Electrical and Computer Engineering

University of Florida

431 Engineering Building, P.O.Box 116130

Gainesville, FL 32611-6130

Tel: (352) 392-4954, Fax: (352) 392-0044

Email: wu@ece.ufl.edu, Web: http://www.wu.ece.ufl.edu

February 29, 2012

Contents

1 Summary 1

2 Kernel-based Feature Extraction under Maximum Margin Criterion 2

2.1 Introduction . 3

2.2 Related Work . 5

2.3 Review of RELIEF and LFE . 6

2.3.1 Nearest Hit (NH) and Nearest Miss (NM) 7

2.3.2 RELIEF . 7

2.3.3 LFE . 8

2.4 Kernel LFE . 9

2.4.1 Nonlinear LFE in High-Dimensional Space 9

2.4.2 Basis Rotation Invariant Property of KLFE 11

2.4.3 KLFE using KPCA . 16

2.4.4 KLFE Algorithm . 18

2.5 Experimental Results . 19

2.5.1 Experimental Setting . 19

2.5.2 Experimental Results for Simulated Data 21

2.5.3 Experimental Results for Real-World Datasets 23

2.6 Conclusion . 24

3 Identification of Network Dynamics under Sparsity and Stationarity Constraints 26

3.1 Introduction . 26

3.2 The VAR Model and Problem Formulation . 29

3.2.1 Conditional Maximum Likelihood Estimation of VAR 29

3.2.2 Penalized Estimation and the Berhu Penalty 30

3.2.3 Sparse and Stationary Estimation of the VAR Model 32

3.2.4 Equivalent Formulations . 34

3.3 The BIPS Framework . 37

3.3.1 The Thresholding Rule for Berhu . 37

3.3.2 The BIPS Algorithm . 39

3.3.3 Thresholding-based Iterative Screening 41

3.3.4 Tuning Strategy . 43

3.4 Bootstrap Enhanced Learning . 44

3.4.1 The BE-BIPS Framework . 44

3.4.2 Stationary Bootstrap . 45

3.5 Experiment . 46

3.5.1 Performance Measures . 46

3.5.2 Experiment Settings . 46

3.5.3 Performance of BIPS . 47

3.5.4 Performance of TIS . 48

3.6 Application to U.S. Macroeconomic Data . 49

3.6.1 Comparison of Rolling MSE . 50

3.6.2 Bootstrap Analysis . 51

3.7 Conclusion . 53

4 Conclusions 53

List of Figures

1 A typical pattern classification system. 3

2 USPS handwritten digits 3(top row) and 5(bottom row). 20

3 Simulated data set containing sine surfaces. 22

ii

4 Simulated data set containing Swiss roll. 23

5 Classification error rate vs. target feature dimension of simulated data. 24

6 Classification error rate vs. target feature dimension on Swiss Roll 25

7 Classification error rate vs. target feature dimension of UCI data. 25

8 Classification error rate vs. target feature dimension on usps 3 vs. 5. 25

9 Example of Huber and Berhu. 32

10 Example of stationary and nonstationary VAR processes. The number of nodes is

p = 50. The stationary VAR process has ρ(A) = 0.95, and the nonstationary VAR

process has ρ(A) = 1.05. 33

11 Penalty functions and corresponding thresholding rules. λ = 0.2, M = 1.3. 38

12 Comparison of Patterns and Sample Paths. Top: pattern of A and observations

from the true model; Middle: pattern of ÂBIPS and sample path from the corre-

sponding stationary model; Bottom: pattern of ÂPLASSO and sample path from the

corresponding nonstationary model. 49

13 Topology of the macroeconomic network in the pre-Great Moderation period. . . . 52

14 Topology of the macroeconomic network in the post-Great Moderation period. . . 52

List of Tables

1 UCI and USPS data sets used in the experiments 20

2 Performance comparison of Lasso, Berhu, and BIPS 48

3 Pmiss of TIS and SIS . 48

4 Performance of TIS . 50

5 Normalized Rolling MSE of Lasso and BIPS for each category 51

6 Rolling MSE of Lasso and BIPS for different horizons 51

iii

1 Summary

The overall objective of this project is to develop transformative theory and algorithms for robust

Automated Target Recognition (ATR). This project addressed the following challenging problems

in ATR: modeling uncertainty, small sample size, high dimensional data, irrelevant features/di-

mensions, heterogeneous data, and outliers. In this project, the PI proposed and developed the

following new techniques:

• Kernel-based feature extraction under maximum margin criterion: We developed a tech-

nique called kernel local feature extraction (KLFE) for ATR applications. Compared with

other feature extraction algorithms, KLFE enjoys nice properties such as low computational

complexity, and high probability of identifying relevant features; this is because KLFE is a

nonlinear wrapper feature extraction method and consists of solving a simple convex opti-

mization problem. The experimental results have shown the superiority of KLFE over the

existing algorithms.

• Identification of network dynamics under sparsity and stationarity constraints: The sparse

vector autoregressive model (VAR) is commonly used for modeling dynamic networks, such

as tank movements, troops movements, brain functional networks, stock markets and social

networks. A penalized linear regression was proposed to identify the autoregressive coeffi-

cient matrices with sparsity constraint. However, though the VAR model is assumed to be

stationary, this property is never taken into consideration by the penalized linear regression.

Moreover, the present techniques for estimating a VAR model are only applicable to the

problems with relatively low dimensionality and large number of observations. The main

purpose of this work is to tackle these challenging issues. We formulate the problem as pe-

nalized linear regression with stationarity constraint, and propose the Berhu iterative sparsity

pursuit with stationarity constraint (BIPS) to solve the problem efficiently. Berhu is a novel

scheme with hybrid penalty that improves the Lasso scheme for high collinearity problem.

We also implement the screening technique into BIPS for dealing with the “large p small n”

problem. A bootstrap enhanced learning procedure is applied to approximate the probability

of existence for each connection. Experiments show that our method guarantees a stationary

estimate, outperforms Lasso in estimation accuracy, and works well for high-dimensional

problems.

• Self-organized-queue-based (SOQ) clustering: In this work, we take a bio-inspired approach

1

to the graph clustering problem and enable fictitious queues with self-organizing capability

to cluster nodes in a graph. Our SOQ clustering scheme is one type of kernel clustering

schemes. Experimental results have demonstrated the superiority of our SOQ scheme over

the existing schemes such as K-means, kernel K-means, spectral clustering and normalized

cuts.

• Robust principal component analysis (RPCA): Our RPCA scheme is based on manifold op-

timization, outlier detection, and subspace decomposition. Experimental results have shown

that our RPCA scheme significantly outperforms PCA when there are outliers in the data;

our RPCA scheme also performs much better than the existing robust PCA schemes under

the condition that both Gaussian noise and outliers exist in the data.

Publications during the reporting period:

• J. Wang, J. Fan, H. Li, D. Wu, “Kernel-based Feature Extraction under Maximum Margin

Criterion,” Journal of Visual Communication and Image Representation, vol. 23, no. 1, pp.

53–62, January 2012.

• Y. He, Y. She, D. Wu, ”Identification of Stationary Sparse Vector Autoregressive Model,” to

be submitted to Journal of Machine Learning Research.

• Y. She, S. Li, D. Wu, ”Manifold-Optimization-Based Robust Principal Component Analy-

sis,” to be submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence.

• B. Sun, D. Wu, ”Self-Organized-Queue-Based Clustering: a Bio-inspired Approach,” to be

submitted to Nature.

2 Kernel-based Feature Extraction under Maximum Margin
Criterion

In this work, we study the problem of feature extraction for pattern classification applications. RE-

LIEF is considered as one of the best-performed algorithms for assessing the quality of features

for pattern classification. Its extension, local feature extraction (LFE), was proposed recently and

was shown to outperform RELIEF. In this paper, we extend LFE to the nonlinear case, and develop

a new algorithm called kernel LFE (KLFE). Compared with other feature extraction algorithms,

2

Figure 1: A typical pattern classification system.

KLFE enjoys nice properties such as low computational complexity, and high probability of identi-

fying relevant features; this is because KLFE is a nonlinear wrapper feature extraction method and

consists of solving a simple convex optimization problem. The experimental results have shown

the superiority of KLFE over the existing algorithms. Next, we present the technical details.

2.1 Introduction

In this paper, we study the problem of feature extraction for pattern classification applications. As

shown in Fig. 1, a typical pattern classification system consists of two parts: one for the training

phase and one for the classification phase. In the training phase, the system is given a training data

set,

D 4
= {(xn, yn)}N

n=1 ⊂ X × Y , (1)

where N is the number of samples in the training data set, X ⊂ RI is the I-dimensional fea-

ture space, and Y = {±1} 1 is the label space. At the end of the training phase, the system

obtains a parameter set, which provides information needed by the feature extraction module and

the classifier in the classification phase. Although in many papers, the feature extraction module

for a classification system is not explicitly specified, it is a significant component. A good feature

extraction technique not only reduces system complexity and processing time, but also improves

classification accuracy by eliminating irrelevant features.

1In this paper, we focus on two-category pattern classification problem.

3

In this paper, we propose a feature extraction algorithm, called kernel local feature extraction

(KLFE), which has low computational complexity, and achieves high probability of identifying

irrelevant features for removal (dimension reduction).

To begin with, we define feature extraction as a mapping

f : X ⊂ RI → X ′ ⊂ RI′ , (2)

which maps patterns in input feature space X to output feature space X ′, in order to optimize some

pre-defined criterion. Usually, we have I ′ 6 I so that features are mapped from a high-dimensional

space to a lower one, which reduces system complexity.

A feature extraction method can be categorized according to the following criteria.

First, a feature extraction method can be linear or nonlinear. A linear feature extraction method

has the form

f(x) = A · x, x ∈ X , (3)

where A is a I ′ × I matrix. Otherwise, it is nonlinear. Usually nonlinear methods outperform

linear ones as nonlinear methods are able to capture the true pattern, which is usually nonlinear. In

this paper, we propose a nonlinear feature extraction method, called KLFE, which has the form of

f(x) = A · ϕ(x), (4)

where ϕ : X ⊂ RI → X̄ ⊂ RĪ is a nonlinear function and A is an I ′ × Ī matrix.

Second, feature extraction has two special cases, namely, feature selection and feature weight-

ing. If A in Eqs. (3) and (4) is a diagonal matrix whose diagonal elements are restricted to either

0 or 1, the feature extraction method is also called feature selection; if the diagonal elements of

diagonal matrixA can take any real-valued number between 0 and 1, the feature extraction method

is also called feature weighting.

Allowing diagonal elements of A to take real-valued numbers, instead of binary ones, enables

feature weighting to employ some well-established optimization techniques and thus allows for

more efficient algorithm implementation than feature selection. A celebrated feature weighting

method is the RELIEF algorithm [1].

One major shortcoming of feature selection and feature weighting is their inability to remove

correlation among different feature dimensions so as to achieve a sparser representation of data

4

samples [2]. In some applications, such as object recognition, where there is no need to preserve

the physical meaning of individual features, feature extraction is more appropriate than feature

selection and feature weighting. For example, Sun and Wu [3] [4] proposed a linear feature extrac-

tion method, called local feature extraction (LFE), which outperforms feature selection and feature

weighting. In this paper, we extend LFE to a nonlinear one called Kernel LFE.

Third, a feature extraction method can be further categorized as a wrapper method or a filter

method [5]. A wrapper method determines the mapping in Eq. (2) by minimizing the classification

error rate of a classifier, whereas a filter method does not. Therefore, filter methods are compu-

tationally more efficient but usually perform worse than wrapper methods. The famous principal

component analysis (PCA) [6, page 115] is a filter method, whereas RELIEF [1] and LFE [3] are

wrapper methods, as they both optimize a 1-nearest-neighbor (1-NN) classifier [6, page 174]. Our

KLFE algorithm is also a wrapper method in that it optimizes a 1-NN classifier in the nonlinear-

transformed space.

Last, a feature extraction method can be obtained by solving a convex optimization problem

or a non-convex optimization problem. A convex optimization problem formulation is preferred

since it can be solved efficiently, compared to a non-convex optimization problem. PCA, RELIEF,

and LFE are all based on convex optimization formulation. Our KLFE algorithm is also based on

a convex optimization formulation, which admits a closed-form solution.

In summary, in this paper, we propose a nonlinear wrapper feature extraction method, which is

based on a convex optimization formulation.

The remainder of the section is organized as follows. In Section 2.2, related work is briefly

reviewed. In Section 2.3, we describe two existing feature extraction techniques, namely, RE-

LIEF and LFE; our proposed KLFE is a generalization of these two algorithms. In Section 2.4,

we present a novel feature extraction algorithm, called KLFE. Section 3.5 presents experimen-

tal results, which demonstrate that KLFE outperforms the existing feature extraction algorithms.

Section 3.7 concludes this work.

2.2 Related Work

In this section, we briefly review some feature extraction algorithms, which will be compared to our

KLFE algorithm. Principal component analysis (PCA) [6, page 115] is probably one of the most

commonly used algorithms for feature extraction. One major drawback of PCA, however, is that it

5

is targeted at minimizing mean squared error for data compression or efficient data representation,

rather than minimizing the classification error probability for pattern classification. Other PCA-

type algorithms, e.g., kernel PCA (KPCA) [7], usually perform better than PCA in representing

nonlinear relationship among different feature dimensions, but suffer from the same limitation as

PCA since they do not use class labels in the training phase; i.e., they are unsupervised algorithms.

The KLFE algorithm proposed in this paper, like its predecessors LFE and RELIEF, utilizes the

class label information in the training phase; i.e., KLFE is an supervised algorithm.

Among the existing feature weighting techniques, RELIEF [1] is considered as one of the best-

performed ones due to its simplicity and effectiveness [8]. RELIEF determines the parameters

of diagonal matrix A in Eq. (3) by solving a convex optimization problem, which maximizes a

margin-based criterion [9]. The LFE algorithm, proposed in Ref. [3], is an extension to RELIEF;

LFE removes the constraint of matrix A in Eq. (3) being diagonal, which is required by RELIEF.

Both LFE and RELIEF are linear methods. In contrast, our KLFE method is a nonlinear extension

to LFE; experimental results show that KLFE performs better than LFE.

In Ref. [10], the authors extended RELIEF to a kernel space, which is the space that contains

the image of the nonlinear-transformation used in a kernel method; their approach is to identify

an orthonormal basis of the kernel space and perform RELIEF in this kernel space; the resulting

schemes are called Feature Space KPCA (FSKPCA) and Feature Space Kernel Gram-Schmidt

Process (FSKGP). They showed that FSKPCA and FSKGP achieve similar performance to that of

the state-of-the-art algorithms. Our KLFE adopts a similar strategy, i.e., our KLFE first computes

an orthonormal basis of the kernel space and then performs LFE in the kernel space. Since LFE

achieves improved performance over RELIEF, KLFE is expected to outperform FSKPCA and

FSKGP, which are kernel-based versions of RELIEF.

In the next section, we briefly review RELIEF and LFE before we present our KLFE in Sec-

tion 2.4.

2.3 Review of RELIEF and LFE

In this section, we briefly review RELIEF and LFE since LFE is an extension of RELIEF and

KLFE is an extension of LFE. We first define two terms, nearest hit (NH) and nearest miss (NM)

in Section 2.3.1, which will be used in all of the three algorithms, i.e., RELIEF, LFE, and KLFE.

Then we introduce RELIEF and LFE in Sections 2.3.2 and 2.3.3, respectively.

6

2.3.1 Nearest Hit (NH) and Nearest Miss (NM)

Suppose we are given a training data set, as shown in Eq. (1). For any pattern (x, y) ∈ D, we

define its nearest hit (NH) as

NH(x, y)
4
= arg minx′ ||x′ − x||p (5)

s.t. (x′, y′) ∈ D, (6)

y′ = y, (7)

and its nearest miss (NM) as

NM(x, y)
4
= arg minx′ ||x′ − x||p (8)

s.t. (x′, y′) ∈ D, (9)

y′ 6= y, (10)

where ||x||p is Lp-norm of vector x. In this paper, we let p = 1, i.e., we choose L1 norm.

Using Eqs. (5) and (8), we further denote

mn
4
= xn −NM(xn, yn), (11)

hn
4
= xn −NH(xn, yn), (12)

for n = 1, . . . , N .

2.3.2 RELIEF

Now we briefly introduce RELIEF. Denote by w = [w1, . . . , wI]
T the weight vector, where wi is

the weight of the i-th dimension of xn ∈ RI . RELIEF defines the margin of a pattern (xn, yn) ∈ D
as

ρn
4
= ||mn||1 − ||hn||1, n = 1, . . . , N. (13)

Then the objective of RELIEF is to maximize the overall margin over weight vector, i.e.,

max
w

∑N
n=1 ρn(w) =

∑N
n=1

(
wT |mn| −wT |hn|

)
, (14a)

s.t. ‖w‖2
2 = 1,w > 0, (14b)

7

where |·| denotes element-wise absolute operator. Let

z
4
=

∑N
n=1 (|mn| − |hn|) , (15)

we simplify Eq. (14) to

max
w

wT z, s.t. ‖w‖2
2 = 1,w > 0. (16)

Applying Lagrangian multipliers λ and θ to Eq. (16), one obtains

L = −wT z + λ (‖w‖2
2 − 1) + wT θ. (17)

Taking derivative with respect to w at both sides of Eq. (17) and setting it to zero results in

∂L
∂w

= −z + 2λw − θ = 0

⇒ w = 1
2λ

(z + θ). (18)

The closed-form solution to Eq. (14) is [9]

w = (z)+

‖(z)+‖2 , (19)

where (z)+ = [(z1)
+, . . . , (zI)

+]
T and (·)+ = max(·, 0). The RELIEF algorithm specifies the

projection matrix

A =

w1 0
. . .

0 wI

 .

2.3.3 LFE

A natural extension of RELIEF is to use a full matrix instead of a diagonal matrix, which results

in LFE [3]. In LFE, the following optimization problem is considered:

max
W

∑N
n=1 ρn(W) =

∑N
n=1 mT

nWmn −
∑N

n=1 hT
nWhn, (20a)

s.t. ‖W‖2
F = 1,W > 0, (20b)

where ‖W‖F is the Frobenius norm of W, i.e., ‖W‖F =
√∑

i,j w2
i,j=

√∑
i λ

2
i , where {λi}I

i=1 are

the eigenvalues of W.

Sun and Wu [3] proved Theorem 1, which provides a solution to Eq. (20).

8

Theorem 1. Let

Σmh
4
=

∑N
n=1 mnm

T
n −

∑N
n=1 hnh

T
n , (21)

and let {(σi, ai)}I
i=1 be the eigen-system of Σmh such that σ1 > σ2 > · · · > σI . The solution for

Eq. (20), up to the difference of a constant, is

W =
∑

{i:σi>0} σiaia
T
i . (22)

According to Theorem 1, the LFE algorithm produces a projection matrix by maintaining the

dimensions specified by eigenvectors {ai}I′
i=1, which correspond to the largest I ′ eigenvalues of

Σmh where I ′ 6 I is the target dimension size as defined in Eq. (3) and I ′ should be chosen such

that σ1 > · · · > σI′ > 0; in other words, LFE is defined by

f(x) = Ax, x ∈ X , (23)

where

A =
[√

σ1a1, . . . ,
√

σI′aI′
]T

. (24)

2.4 Kernel LFE

In this section, we propose KLFE algorithm. This section is organized as follows. In Section 2.4.1,

we present the extension of LFE to a high-dimensional space by introducing a nonlinear mapping.

In Section 2.4.2, we prove that both LFE and KLFE are basis rotation invariant and thus KLFE can

be considered to perform LFE under an orthonormal basis in the kernel space. In Section 2.4.3, we

present an algorithm for implementing KLFE by using KPCA to find an orthonormal basis in the

kernel space. We summarize KLFE algorithm and describe the implementation details in Section

2.4.4. Computational complexity is also analyzed in this section.

2.4.1 Nonlinear LFE in High-Dimensional Space

As presented in Section 2.3.3, the LFE algorithm is a linear feature extraction method as in Eq. (3).

Our idea of extending LFE is to introduce a nonlinear function,

ϕ : X ⊂ RI → X̄ ⊂ RĪ , (25)

9

where usually Ī À I , which maps patterns from a low-dimensional space to a high-dimensional

one. We call X̄ or RĪ kernel space, which contains the image of ϕ. Then we apply the LFE

algorithm to kernel space X̄ ; the resulting algorithm is called KLFE. We further assume Ī À N ,

as is always the case when using a kernel method. Similar to Eqs. (11) and (12), we let

m̄n
4
= ϕ(xn)− ϕ (NM(xn, yn)) , (26)

h̄n
4
= ϕ(xn)− ϕ (NH(xn, yn)) , (27)

n = 1, . . . , N . KLFE can be obtained by solving the following optimization problem,

max
W̄

∑N
n=1 m̄T

nW̄m̄n −
∑N

n=1 h̄T
nW̄h̄n, (28a)

s.t. ‖W̄‖2
F = 1,W̄ > 0. (28b)

Since the only difference between Eq. (28) and Eq. (20) is the use of mapping ϕ, one can

directly use Theorem 1 to solve Eq. (28). Corollary 1.1 summarizes the solution to Eq. (28).

Corollary 1.1. Let

Σ̄mh
4
=

∑N
n=1 m̄nm̄

T
n −

∑N
n=1 h̄nh̄

T
n , (29)

and let {(σ̄i, āi)}Ī
i=1 be the eigen-system of Σ̄mh, such that σ̄1 > σ̄2 > · · · > σ̄Ī . The solution to

Eq. (28), up to the difference of a constant, is

W̄ =
∑

{i:σ̄i>0}
σ̄iāiā

T
i .

From Corollary 1.1, the KLFE algorithm produces a projection matrix by maintaining the di-

mensions specified by eigenvectors {σ̄i}I′
i=1, which correspond to the largest I ′ eigenvalues of Σ̄mh

where I ′ 6 Ī is the target dimension size as defined in Eq. (3) and I ′ should be chosen such that

σ̄1 > · · · > σ̄I′ > 0; in other words, KLFE is defined by

f(x) = Āϕ (x) , x ∈ X , (30)

where

Ā = [
√

σ̄1ā1, . . . ,
√

σ̄I′ āI′]
T

. (31)

10

2.4.2 Basis Rotation Invariant Property of KLFE

In this section, we study an important property of KLFE: basis rotation invariance. Before we

show the basis rotation invariant property of KLFE in Proposition 1, we present Lemma 1.

Lemma 1 states that LFE is basis rotation invariant.

Lemma 1. Let {e(i)
1 }I

i=1 and {e(i)
2 }I

i=1 be two different orthonormal bases in input feature space

RI . Assume that {e(i)
2 }I

i=1 can be obtained by counterclockwise rotating {e(i)
1 }I

i=1, and the rotation

matrix is denoted by Q. Then, LFE is basis rotation invariant, i.e., a feature vector extracted by

LFE under {e(i)
1 }I

i=1 is the same as the feature vector extracted by LFE under {e(i)
2 }I

i=1.

Proof. Assume training samples are given under basis {e(i)
1 }I

i=1, i.e.,

D 4
= {(xn, yn)}N

n=1 ⊂ X × Y ,

where X ⊂ RI is the I-dimensional feature space and Y = {±1}. Under basis {e(i)
1 }I

i=1, LFE is

formulated as follows:

max
W1

∑N
n=1 ρn(W1) =

∑N
n=1 mT

nW1mn −
∑N

n=1 hT
nW1hn, (32a)

s.t. ‖W1‖2
F = 1,W1 > 0. (32b)

From Theorem 1, the projection matrix of LFE under basis {e(i)
1 }I

i=1 is given by

A1 =
[√

σ1a1, . . . ,
√

σI′aI′
]T

, (33)

where I ′ 6 I is the target dimension size and {ai} are the eigenvectors of Σmh corresponding to

the largest I ′ eigenvalues.

Under basis {e(i)
2 }I

i=1, the training samples become

D 4
= {(Qxn, yn)}

The nearest miss and nearest hit remain the same for each data sample since the Euclidean dis-

tance does not change under different orthonormal bases. Under basis {e(i)
2 }I

i=1, LFE is formulated

11

as below:

max
W2

∑N
n=1 ρn(W2) =

∑N
n=1(Qmn)TW2Qmn −

∑N
n=1(Qhn)TW2Qhn, (34a)

s.t. ‖W2‖2
F = 1,W2 > 0. (34b)

Comparing (32) and (34), we have W1 = QTW2Q. Then we have

W2 = QW1Q
T (35)

(a)
= Q(

∑

{i:σi>0}
σiaia

T
i)QT (36)

=
∑

{i:σi>0}
σiQaia

T
i QT (37)

where (a) is due to (22). Let the projection matrix of LFE under basis {e(i)
2 }I

i=1, beA2. Then, from

(37), (22), and (24), we have

A2 = [
√

σ1Qa1, . . . ,
√

σI′QaI′]
T (38)

(a)
= A1Q

T (39)

where (a) is due to (33). Then, the feature vector extracted by LFE under {e(i)
2 }I

i=1 is given by

A2Qx
(a)
= A1Q

T Qx (40)

(b)
= A1x (41)

where (a) is due to (39); (b) is due to the fact that Q is an orthogonal matrix. Eq. (41) means

that a feature vector extracted by LFE under {e(i)
1 }I

i=1, i.e., A1x is the same as the feature vector

extracted by LFE under {e(i)
2 }I

i=1, i.e., A2Qx. This completes the proof.

Usually we do not know the dimension of the kernel subspace that contains the mapped data

samples (including training and test data samples), but given sufficient number of training samples,

we can estimate the dimension of this kernel subspace. Assume the rank of the mapped training

data samples {ϕ(xn)}N
n=1 is Nt, i.e., the mapped training data samples are contained in an Nt-

dimensional kernel subspace denoted by S . Suppose the kernel space X̄ has an orthonormal basis

{e(i)}Ī
i=1.

Proposition 1 states that KLFE is basis rotation invariant for bases in the kernel space.

12

Proposition 1. Let {e(i)
1 }Ī

i=1 and {e(i)
2 }Ī

i=1 be two orthonormal bases in kernel space. Assume

that {e(i)
2 }Ī

i=1 can be obtained by counterclockwise rotating {e(i)
1 }Ī

i=1, and the rotation matrix is

denoted by Q. Then, KLFE is basis rotation invariant for all samples x where ϕ(x) ∈ S , i.e., a

feature vector extracted by KLFE under {e(i)
1 }Ī

i=1 for input sample x is the same as the feature

vector extracted by KLFE under {e(i)
2 }Ī

i=1.

Proof. Assume the training sample set is

D 4
= {(xn, yn)}N

n=1 ⊂ X × Y ,

where X ⊂ RI is the I-dimensional feature space and Y = {±1}.

In KLFE, a sample is first mapped from a low-dimensional space to a high-dimensional space

by the following nonlinear transformation

ϕ : X ⊂ RI → X̄ ⊂ RĪ . (42)

The training sample set in the kernel space under basis {e(i)
1 }Ī

i=1 is denoted by

D1
4
= {(ϕ(xn), yn)}N

n=1 (43)

Under basis {e(i)
2 }Ī

i=1, the training sample set in the kernel space becomes

D2
4
= {(Qϕ(xn), yn)}N

n=1

Denote the projection matrix of KLFE in (30) under basis {e(i)
1 }Ī

i=1 and {e(i)
2 }Ī

i=1 by Ā1 and

Ā2, respectively. Note that the dimension of the feature vector extracted by KLFE is I ′, where

I ′ < Ī . Since KLFE is equivalent to applying LFE in the kernel space, from Lemma 1, we have

Ā1ϕ(x) = Ā2Qϕ(x) (44)

This completes the proof.

Proposition 2. Let {e(i)
1 }Ī

i=1 be an orthonormal basis in kernel space. Denote by S the kernel

subspace spanned by training data {ϕ(xn)}N
n=1; the dimension of S is Nt. Then an Ī-dimensional

13

feature vector f(x) extracted by KLFE under {e(i)
1 }Ī

i=1 for input sample x (where ϕ(x) ∈ S) must

be in the form of

f(x) =

[
f1(x)
0Ī−Nt,1

]
(45)

where f1(x) is an Nt-dimensional vector and 0Ī−Nt,1 is an (Ī − Nt)-dimensional vector whose

entries are all zero. In other words, the last Ī −Nt entries of the extracted feature vector f(x) are

all zero.

Proof. Assume the training sample set is

D 4
= {(xn, yn)}N

n=1 ⊂ X × Y ,

where X ⊂ RI is the I-dimensional feature space and Y = {±1}.

After nonlinear mapping, the training sample set in the kernel space under basis {e(i)
1 }Ī

i=1

becomes

D1
4
= {(ϕ(xn), yn)}N

n=1 (46)

Let {e(i)
2 }Nt

i=1 be an orthonormal basis for S. Denote by S⊥ the complementary subspace of S.

Let {e(i)
3 }Ī

i=Nt+1 be an orthonormal basis for S⊥. Thus {e(i)
2 }Nt

i=1

⋃{e(i)
3 }Ī

i=Nt+1 form an orthonor-

mal basis for kernel space.

From Proposition 1, the feature vector extracted by KLFE algorithm under basis {e(i)
1 }Ī

i=1 is the

same as that extracted by KLFE under a rotated basis {e(i)
2 }Nt

i=1

⋃{e(i)
3 }Ī

i=Nt+1. So we can compute

the extracted feature vector under basis {e(i)
2 }Nt

i=1

⋃{e(i)
3 }Ī

i=Nt+1 for simplicity.

Since ϕ(x) ∈ S , hence the last Ī−Nt entries of the coordinates of ϕ(x) under basis {e(i)
2 }Nt

i=1

⋃{e(i)
3 }Ī

i=Nt+1

are all zero. From the definition of Σ̄mh in Eq. (29), we have

Σ̄mh =

[
Σ̄∗

mh 0
0 0

]
(47)

where Σ̄mh is an Ī × Ī matrix, and Σ̄∗
mh is an Nt ×Nt matrix.

Let Ā denote the projection matrix of KLFE in (30) under basis {e(i)
2 }Nt

i=1

⋃{e(i)
3 }Ī

i=Nt+1. From

Corollary 1.1, Eq. (30) and Eq. (47), we have

Ā =

[Ā1 0
0 0

]
(48)

14

where

Ā1 =
[√

σ̄1ā1, . . . ,
√

σ̄Nt āNt

]T
, (49)

and {(σ̄i, āi)}Nt

i=1 is the eigen-system of Σ̄∗
mh.

From (30), the extracted feature vector f(x) is given by

f(x) = Āϕ(x) (50)

=

[Ā1ϕ
∗(x)
0

]
(51)

where

ϕ(x) =

[
ϕ∗(x)

0

]
(52)

This completes the proof.

It is worth mentioning that if ϕ(x) /∈ S , then the distance d(ϕ(x), ϕ′(x)) is negligible where

ϕ′(x) is the projection of ϕ(x) onto S. The reason is that if the training data {xn}N
n=1 and the

test data x are sampled from the same distribution, ||ϕ(x)− ϕ′(x)|| is mainly caused by irrelevant

features or measurement noise [10].

From Proposition 2, we can perform feature extraction in kernel subspace S in which the basis

can be expressed by linear combinations of mapped data samples in the kernel space. In this way,

we can simplify the computation involved in KLFE. Proposition 2 shows that KLFE can extract at

most Nt dimensional nonzero feature vector for arbitrary input sample which lies in S.

Based on the two propositions, KLFE can be computed in three steps. First, we find a basis in

kernel subspace. This can be done by using KPCA or Kernel Gram-Schmidt Procedure (KGP) [10];

the dimension of the basis is equal to the rank of the mapped data set in kernel space. Second, the

data in the kernel space can be mapped onto the basis, each basis vector of which is a linear

combination of the mapped data {ϕ(x)}, i.e., v(i) =
∑

j αijϕ(x(j)). Note that the kernel method

can be used to obtain the kernel feature under the basis. Third, we perform LFE on the resulting

kernel features which have dimension of Nt.

Next, we present the final KLFE algorithm by using KPCA to find a basis in kernel subspace.

15

2.4.3 KLFE using KPCA

For a given ϕ, its kernel function, K : X × X → R, is defined as

K (x1,x2) = 〈ϕ(x1), ϕ(x2)〉 , (53)

where < ·, · > represents inner-product operator. It is known that K and ϕ have 1-to-1 mapping

[11]. In other words, we can ignore the explicit form of ϕ by using a given K directly, as long as

all computations are conducted through inner product.

Without loss of generality, assume the average of the data samples in kernel space is zero. Let

K
4
= X̄T X̄ be the kernel matrix, where matrix X̄

4
= [ϕ(x1), ϕ(x2), · · · , ϕ(xN)]. Hence the entry

of i-th row, j-th column in K is given by

Ki,j =< ϕ(xi), ϕ(xj) >= K (xi,xj) , i = 1, . . . , N ; j = 1, . . . , N. (54)

Let {γn,vn}N
n=1 be the eigen-system of K, where the eigenvalues are sorted in decreasing

order, i.e., γ1 > γ2 > · · · > γN . Then, by definition of eigenvalue decomposition,

X̄T X̄vn = γnvn, (55)

X̄X̄T
(
X̄vn

)
= γn

(
X̄vn

)
, (56)

for n = 1, . . . , N . As a result, {γn}N
n=1 are the N largest eigenvalues of X̄X̄T , whose correspond-

ing eigenvectors are
{
X̄vn

}N

n=1
. Denote the dimension of matrix K by N ′. If N ′ = N , then γi > 0

for i = 1, 2, · · · , N . If N ′ < N , we perform LFE in the kernel subspace of dimension N ′.

Normalizing eigenvectors
{
X̄vn

}N

n=1
produces an orthonormal basis

Ψ = X̄
[

v1√
γ1

, . . . , vN√
γN

] 4
= X̄V′. (57)

Thus for input vector xn (n = 1, . . . , N), the feature vector extracted by KLFE under the basis in

(57) is given by

x̃n = ΨT ϕ(xn) =

vT
1 /
√

γ1
...

vT
N/
√

γN

 X̄T ϕ(xn)

= V′T X̄T ϕ(xn) = V′T K(n), (58)

16

where K(n) denotes the n-th column of kernel matrix K. More generally, for any x ∈ X , we have

x̃ = V′T

K(x1,x)

...
K(xN ,x)

 4

= ϕ̃(x). (59)

Eq. (59) actually specifies an N -dimensional kernel space,

X̃ = {ϕ̃(x) : x ∈ X} (60)

We summarize KPCA-based KLFE algorithm as follows. Let

m̃n = ϕ̃(xn)− ϕ̃ (NM(xn, yn)) , (61)

h̃n = ϕ̃(xn)− ϕ̃ (NH(xn, yn)) , (62)

n = 1, . . . , N . The KLFE algorithm solves the following optimization problem,

max
W̃

∑N
n=1 m̃T

nW̃m̃n −
∑N

n=1 h̃T
nW̃h̃n, (63a)

s.t. ‖W̃‖2
F = 1,W̃ > 0. (63b)

Using the result in Theorem 1, the solution to Eq. (63) is given in Theorem 2.

Theorem 2. Let

Σ̃mh =
∑N

n=1 m̃nm̃
T
n −

∑N
n=1 h̃nh̃

T
n (64)

and let {(σ̃i, ãi)}N
i=1 be the eigen-system of Σ̃mh, such that σ̃1 > · · · > σ̃N . The solution to

Eq. (63), up to the difference of a constant, is

W̃ =
∑

{n:σ̃n>0}
σ̃nãnã

T
n .

Accordingly, the projection matrix is

Ã =
[√

σ̃1ã1, . . . ,
√

σ̃I′ ãI′
]T

. (65)

For an input x, the extracted feature is given by

f(x) = Ãϕ̃(x) = ÃV′T

K(x1,x)

...
K(xN ,x)

 . (66)

where V′ is defined in Eq. (57).

17

¥

KLFE is superior to LFE in that it performs LFE in a high-dimensional space, where discrim-

inant information is much easier to extract. From the above analysis, KLFE can be considered as

KPCA followed by LFE. Therefore, KLFE is superior over KPCA since KLFE takes into account

the label information; KLFE also outperforms kernel RELIEF, i.e., FSKPCA and FSKGP [10],

where FSKPCA is KPCA followed by RELIEF.

2.4.4 KLFE Algorithm

Now the pseudo-code of KLFE is shown. In the initialization step, we need some parameters, like

the number of neighbors for computing Σmh. Assuming that we use the RBF kernel and K-nearest-

neighbors as classifier, we need the width of RBF kernel and the number of neighbors for KNN. In

our experiments, we use 10-fold cross validation to find these parameters.

If we use complex tuning method to find better parameter set, the performance of KLFE will be

improved. In this paper, we do not focus on complex tuning method or classification method.

Therefore we use simple tuning method: 10-fold cross validation to tune all parameters needed.

For each parameter, we use only 5-10 candidate points.

The complexity of KLFE depends on the kernel function. For example, consider the radial

basis function (RBF) kernel [11, page 77], which is given by

K (x,x′) = exp
(
−‖x−x′‖2

2ρ2

)
. (67)

The complexity of computing kernel matrix, i.e., Eq. (54), is O (N2I). The complexity of eigen-

value decomposition for kernel matrix and the complexity of LFE in the N -dimensional kernel

space are both O (N3). As a result, the overall complexity of KLFE using RBF kernel is

O
(
N2I

)
+ O

(
N3

)
. (68)

It is comparable to the complexity of LFE, which is also O (N2I) + O (N3) [3]. To reduce the

computational complexity of KLFE, we can use Kernel Gram-Schmidt Procedure [10] to find a

basis instead of using KPCA.

18

Algorithm KLFE

Input: Training samples X = [x1 . . . xN] and labels Y = [y1 . . . yN]
1) Initialization

Normalize X , give kernel parameter, number of neighbors L.
2) Mapping to kernel space

2.1) K = kernel(X), K is the kernel of X .
2.2) [V, D] = EigenDecomposition(K),

V ’s column contains one principal component, D is a diagonal matrix with eigenvalues.
All the zero values are removed.

2.3) X̄ = DV T K
3) LFE

3.1) for n = 1 : N
ζi is the ith nearest x̄i labeled the same class with x̄
ηi is the ith nearest x̄i labeled different class with x̄
Then Hn = [x̄n − ζ1 . . . x̄n − ζL], Mn = [x̄n − η1 . . . x̄n − ζL]

3.2) Σmh =
∑N

n=1 MnMT
n −

∑N
n=1 HnH

T
n

3.3) [V̄ , D̄] = EigenDecomposition(Σmh), the same as 2.2.
3.4) X̃ = D̄1/2V̄ T X̄

4) Output: X̃ .

2.5 Experimental Results

In this section, we conduct experiments on pattern classification to show the performance of our

KLFE algorithm and compare it with existing feature extraction schemes. This section is organized

as follows. In Section 2.5.1, we describe the experimental setting. In Sections 2.5.2 and 2.5.3, we

show the experimental results for simulated data sets and real-world data sets, respectively.

2.5.1 Experimental Setting

We conduct classification experiments on two types of data sets, namely, simulated data sets (sine-

surface and Swiss roll) and real-world data sets (UCI Machine Learning Repository [12] and USPS

digit handwriting data). In our experiments, we use two data sets from UCI Machine Learning

Repository, i.e., data sets for diabetes, and ringnorm. For USPS data, we choose only two digits,

namely ”3 versus 5”, since they are the most challenging digits for recognition. (See Fig. 2) We

exchange the ”traditional” training sets and testing sets as shown in Table 1.

To make a fair comparison, we compare KLFE with the following feature extraction schemes,

which are also based on kernel. We also compare KLFE with origin LFE.

19

Figure 2: USPS handwritten digits 3(top row) and 5(bottom row).

Table 1: UCI and USPS data sets used in the experiments

data set training sample size testing sample size number of features
UCI-diabetes 468 300 8
UCI-ringnorm 400 7000 20
USPS-(3vs.5) 326 1214 256

1. Generalized Discriminant Analysis (GDA) using a kernel approach [13]

2. KPCA

3. FSKPCA, which is one type of algorithm for kernel RELIEF

4. Kernel K-Nearest Neighbor (KKNN).

GDA can generate at most n − 1 features where n is the number of categories/classes. In

this paper, we only study feature extraction methods for binary classification problem. KKNN is

kernelized K-nearest-neighbor (KNN) [6, page 174] based on a distance function induced by the

kernel function.

Note that KLFE, GDA, KPCA and FSKPCA are feature extraction algorithms and we are

interested in their classification capability, i.e., how well a given classifier performs if the classifier

uses the features obtained from these feature extraction algorithms. In our experiments, we choose

KNN as the classifier because of two reasons. First, KNN is a simple yet effective classifier, which

often yields competitive results, compared to some advanced machine learning algorithms [14].

Second, the focus of this paper is not on an optimal classifier for each dataset. KNN is surely not an

optimal classifier in many cases but it provides a platform where we can compare different feature

extraction algorithms with a reasonable computational cost. Actually, for fair comparison, we let

K = 1. Then we can explicitly see how these feature extraction algorithms improve classification

ability of KNN in kernel space, i.e., KKNN.

In the experiments, we use RBF kernel function defined by Eq. (67) with σ = 1. Our compari-

son strategy is to use the same kernel function with the same width σ and the same classifier KNN

where K = 1. To eliminate statistical variations, each algorithm is run several times for each data

20

set. In each run, a data set is split into training data subset and testing data subset randomly. Then

the testing error rate is obtained by averaging over all the runs.

2.5.2 Experimental Results for Simulated Data

In this section, we conduct experiments on two simulated data sets: twin sine and Swiss roll, which

are both in the following form:

D = {(xn, yn)}N
n=1 ,

where

yn ∈ {−1, 1}, (69)

xn = RI×3 ×

x
(1)
n

x
(2)
n

x
(3)
n

 , (70)

(71)

where RI×3 denotes a random I × 3 matrix.

For twin sine data, x
(1)
n is a random variable uniformly distributed in [0, 2π]; x

(2)
n is a random

variable and x
(2)
n = sin

(
x

(1)
n

)
+ I(yn = 1)×D + βN , where I(·) denotes an indicator function,

D is a constant and βN denotes a Gaussian random variable with zero mean and variance σ2; x
(3)
n

is a random variable uniformly distributed in [0, 1]. Actually, the data set is composed of two 3-

dimensional sine surfaces, labeled as −1 and 1, with additive Gaussian noise βN , and the two sine

surfaces are separated apart by a distance D. Then the 3-dimensional vector [x
(1)
n ,x

(2)
n ,x

(3)
n]T is

mapped to a I-dimensional vector by matrix RI×3.

Fig. 3(a) shows simulated 3-dimensional sine-surfaces and the data set of [x
(1)
n ,x

(2)
n ,x

(3)
n]T .

Fig. 3(b) shows the projection of the data points in Fig. 3(a) onto x
(1)
n − x

(2)
n plane.

We further consider the relationship among classification error rate, separation distance D, and

noise variance σ2. It is obvious that, as D increases, the two sine-surfaces are further away from

each other, resulting in better classification accuracy. Similarly, as σ2 decreases, the probability

that samples from two classes overlap decreases, which also increases the classification accuracy.

21

(a) 3D View (b) Projection of the data points in Fig. 3(a) onto

x(1)
n − x(2)

n plane

Figure 3: Simulated data set containing sine surfaces.

Hence, we define signal-noise-rate (SNR) as

SNR = D2

σ2 (72)

SNR (dB) = 20 log10

(
D
σ

)
. (73)

Figs. 5(a) and 5(b) show classification error rate vs. target feature dimension I ′ for different

schemes under SNR = 0dB and -5dB, respectively.

For the Swiss roll data, we let x
(1)
n = θ × cos(θ) and x

(2)
n = θ × sin(θ), where θ is a random

variable uniformly distributed in [0, 4π]. Actually the x
(1)
n -x(2)

n curve is a helix. x
(3)
n is a random

variable uniformly distributed in [0, 2]; then the data set is a 3-D helix surfaces. We label sam-

ples with θ ∈ [0, 2π] as −1 and those with θ ∈ (2π, 4π] as 1. Then the 3-dimensional vector

[x
(1)
n ,x

(2)
n ,x

(3)
n]T is mapped to a I-dimensional vector by matrix RI×3.

Fig. 4(a) shows simulated 3-dimensional Swiss roll and the data set of [x
(1)
n ,x

(2)
n ,x

(3)
n]T . Fig. 3(b)

shows the projection of the data points in Fig. 3(a) onto x
(1)
n − x

(2)
n plane.

The classification error rates are all averaged over 10 simulation runs. From Figs. 5(a) and

5(b), it is observed that KLFE+KNN achieves the minimum classification error rate among all the

schemes, for I ′ > 10; KLFE+KNN is able to reduce the classification error rate by more than 10%,

compared to other four schemes. From Fig. 6, we can see that KLFE is similar with LFE. Both

22

0
0.5

1
1.5

2

−10

0

10

20
−15

−10

−5

0

5

10

x
3

x
1

x 2

(a) 3D View

−10 −5 0 5 10 15
−12

−10

−8

−6

−4

−2

0

2

4

6

8

x
1

x 2

(b) Projection of the data points in Fig. 4(a) onto

x(1)
n − x(2)

n plane, where a circle represents a point

with label −1, and * represents a point with label 1

Figure 4: Simulated data set containing Swiss roll.

KLFE and LFE are better than PCA. When dimension equals to only 1, KLFE can achieve good

results while the other two perform much worse. In addition, our KLFE is quite robust against the

change of target feature dimension I ′; this is because KLFE has an explicit mechanism to eliminate

irrelevant features.

2.5.3 Experimental Results for Real-World Datasets

In this section, we conduct experiments on three real-world data sets: UCI-diabetes, UCI-ringnorm,

and USPS-3vs5 (digit “3” vs. “5”).

Fig. 7(a) shows classification error rate vs. target feature dimension I ′ for different schemes

on diabetes dataset. It is observed that KLFE+KNN achieves the minimum classification error rate

among all the schemes, for I ′ > 30.

Fig. 7(b) shows classification error rate vs. target feature dimension I ′ for different schemes

on ringnorm dataset. It is observed that KLFE+KNN improves the classification ability of KKNN

dramatically, by reducing the classification error rate by more than 50%. GDA also yields good

performance but FSKPCA and KPCA give quite poor results, which are even worse than KKNN.

Fig. 8 shows classification error rate vs. target feature dimension I ′ for three different schemes:

KLFE+KNN, LFE+KNN, and PCA+KNN. In this experiment, KLFE performs better than PCA,

and achieves performance similar to that of LFE.

23

0 20 40 60 80 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

feature dimension

cl
as

si
fic

at
io

n
er

ro
r

ra
te

KLFE
FSKPCA
KPCA
GDA
KKNN

(a) TwinSine, SNR = 0 dB

0 20 40 60 80 100

0.35

0.4

0.45

0.5

0.55

feature dimension

cl
as

si
fic

at
io

n
er

ro
r

ra
te

KLFE
FSKPCA
KPCA
GDA
KKNN

(b) TwinSine, SNR = −5 dB

Figure 5: Classification error rate vs. target feature dimension of simulated data.

In summary, our proposed KLFE achieves superior performance over the existing algorithms

in most cases. Note that there are strong relationship among KPCA, KLFE, and FSKPCA. Both

KLFE and FSKPCA find a basis in kernel subspace, differing in that KLFE uses feature extraction

matrix to maximize the average margin whereas FSKPCA uses feature weighting to maximize the

average margin. Compared to KLFE and FSKPCA, which use supervised learning, KPCA uses

unsupervised learning (i.e., without using label information).

It is worth mentioning that our experiments focus on comparison of various feature extraction

methods rather than optimal classifier design. In fact, in order to achieve best classification per-

formance using KLFE+KNN, we should select the optimal K for KNN under KLFE, and the best

kernel function. But for fair comparison, we just use the same classifier and the same parameter

setting for all the feature extraction methods.

2.6 Conclusion

This work is concerned with feature extraction techniques for pattern classification applications.

A good feature extraction algorithm is critical in a pattern classification system as it helps reduce

system complexity and enhance classification accuracy by eliminating irrelevant features.

In this work, we proposed a novel feature extraction algorithm, referred to as KLFE, which is

a generalization of LFE. The power of KLFE lies in the fact that KLFE has the good properties of

a feature extraction technique, i.e., it is a nonlinear wrapper feature extraction method that solves

a convex optimization problem. Although nonlinearly mapping a pattern to a high-dimensional

24

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

LFE
KLFE
PCA

Figure 6: Classification error rate vs. target feature dimension on Swiss Roll

0 10 20 30 40 50 60 70 80 90 100
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

feature dimension

cl
as

si
fic

at
io

n
er

ro
r

ra
te

KLFE
FSKPCA
KPCA
GDA
KKNN

(a) UCI: diabetes

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

feature dimension

cl
as

si
fic

at
io

n
er

ro
r

ra
te

KLFE
FSKPCA
KPCA
GDA
KKNN

(b) UCI: ringnorm

Figure 7: Classification error rate vs. target feature dimension of UCI data.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

feature dimension

cl
as

si
fic

at
io

n
er

ro
r

ra
te

LFE
KLFE
PCA

Figure 8: Classification error rate vs. target feature dimension on usps 3 vs. 5.

25

space followed by LFE, seems to incur extremely high computation complexity, we theoretically

proved that LFE and KLFE are both basis rotation invariant, which allows us to implement KLFE

via KPCA or KGP followed by LFE.

As shown in Eq. (68), the overall computation complexity of KLFE using RBF kernel function

is O (N2I) + O (N3), comparable to LFE in original feature space. In other words, KLFE has

the advantage of better discriminant information extraction in high-dimensional space, while pre-

serving a comparable computation complexity as LFE in low-dimensional space. The experiments

conducted on both simulated data set and three real-world data sets demonstrate the effectiveness

and robustness of our KLFE algorithm.

3 Identification of Network Dynamics under Sparsity and Sta-
tionarity Constraints

The sparse vector autoregressive model (VAR) is commonly used for modeling dynamic networks,

such as tank movements, troops movements, brain functional networks, stock markets and social

networks. A penalized linear regression was proposed to identify the autoregressive coefficient

matrices with sparsity constraint. However, though the VAR model is assumed to be stationary,

this property is never taken into consideration by the penalized linear regression. Moreover, the

present techniques for estimating a VAR model are only applicable to the problems with relatively

low dimensionality and large number of observations. The main purpose of this work is to tackle

these challenging issues. We formulate the problem as penalized linear regression with stationarity

constraint, and propose the Berhu iterative sparsity pursuit with stationarity constraint (BIPS) to

solve the problem efficiently. Berhu is a novel scheme with hybrid penalty that improves the Lasso

scheme for high collinearity problem. We also implement the screening technique into BIPS for

dealing with the “large p small n” problem. A bootstrap enhanced learning procedure is applied to

approximate the probability of existence for each connection. Experiments show that our method

guarantees a stationary estimate, outperforms Lasso in estimation accuracy, and works well for

high-dimensional problems. Next, we present the technical details.

3.1 Introduction

There is recently much interest in identifying the network dynamics and behaviors in the emerging

scientific discipline of network science [15]. In a dynamic network, the evolution of a node is con-

26

trolled not only by itself, but also by other nodes. Take the gene regulatory network for example,

the expression levels of genes interact with each other, following some dynamic rule and struc-

ture. The interacting relations connect the genes together, which forms a dynamic network. If the

topology and evolution of such network is known, we can analyze the regulation between genes, or

detect unusual behaviors to help diagnose and cure genetic diseases. Similarly, the modeling and

estimation of dynamic networks is also of great importance for various domains including stock

market, brain network [16] and social network [17]. Therefore, to accurately identify the topology

and dynamics underlying such network, scientists are devoted to find appropriate mathematical

models and corresponding estimation methods.

In practice, we can obtain discrete observations of the network over a period of time. For

example, the expression levels of genes are collected at different time points in the microarray

experiment, and the macroeconomic data of U.S. are recorded monthly or seasonally. These mul-

tivariate time series contains important information for network estimation or analysis. The vector

autoregressive model (VAR) is one of the most commonly used models for multivariate time se-

ries [18]. In a VAR model, the state of each node in the network is characterized by a time series.

The value of a node at the current time point is a linear combination of the past values of itself and

other nodes that regulate it. This regulation relationship is illustrated by the model’s coefficient

matrices, which can be estimated using the observed data.

When estimating the coefficient matrices, we not only want the estimate to fit the training

data well, but also need a topology that is easy to interpret and illustrates the most important

connections in the network. A “sparse” topology is not only easy to analyze, but also agrees

with reality. For example, it has been believed by geneticists that, despite the large scale of a gene

regulatory network, each gene is normally only regulated by a few number of other genes [19]. And

it is a great challenge to identify such regulation relationships accurately. Compressive sensing

approaches such as penalized linear regression are applied by researchers to achieve a small fitting

error and a sparse structure simultaneously [20]. Penalized linear regression has been studied

a lot in the past decades. Different penalties and algorithms are proposed. A comprehensive

review is provided by [21]. The L1 penalty is popular for its elegance in theory and simplicity

in implementation. However, the problem for applying L1 penalty to estimate the VAR model

is its incapability of dealing with collinearity. Moreover, it also suffers from inconsistency and

biasness. To improve these drawbacks, we study a new penalty Berhu, which combines the L1 and

L2 penalties in a novel fashion. An iterative thresholding algorithm is proposed to efficiently solve

penalized linear regression with Berhu penalty.

27

For a network to stay stable and function normally, the VAR model must be stationary. Imagine

that the macroeconomic data is not a stationary process, it is easy for one or more indices to grow

exponentially, and the whole economic environment must collapse eventually. Mathematically, the

maximum likelihood estimation and penalized linear regression all depend on the assumption that

the VAR process is stationary [18]. However, stationarity has never been taken into consideration

by the estimation algorithms. In fact, as will be shown later in the experiment, it is possible for

penalized linear regression to give a nonstationary estimate even when the true model is stationary.

In this paper, we aim at dealing with the stationarity property of VAR model, which is of great

importance but has never been tackled properly before. We will show that the penalized linear

regression method may fail to give a stationary estimate, and propose the Berhu iterative sparsity

pursuit with stationarity constraint (BIPS) to overcome this shortcoming. Experiment shows that

our method can guarantee a stationary and sparse estimate as well as give a satisfactory identifica-

tion accuracy. Moreover, when used for forecasting or prediction, our algorithm outperforms the

simple penalized regression in a fundamentally different fashion.

Nowadays, we are facing more and more challenges from high dimensional data [22]. For

example, A microarray dataset often has thousands of genes but fewer than one hundred of samples.

This so-called “large p small n” problem adds difficulties to our estimation method in terms of

accuracy as well as computation cost. Dimensionality reduction techniques such as screening [23]

can help ease the computation burden and improve accuracy. Nevertheless, a “one-time” estimate,

without p-value or confidence interval, may not be satisfactory in practice. To address this issue,

we propose the bootstrap enhanced learning procedure. Instead of selecting connections, bootstrap

provides us the probability for each connection to exist. We will use the stationary bootstrap [24],

which keeps the stationarity property of each bootstrap sample.

This section is organized as follows. Section 3.2 introduces the stationary and sparse VAR

model, and formulates an optimization problem to estimate such a model. Section 3.3 proposes our

algorithms, mainly the Berhu iterative sparsity pursuit with stationarity constraint (BIPS), and the

thresholding-based iterative screening (TIS). The bootstrap enhanced BIPS (BE-BIPS) is described

in Section 3.4. Section 3.5 shows experimental results on synthetic data. In Section 3.6, we apply

the proposed framework to the U.S. macroeconomic data. Section 3.7 concludes our work.

28

3.2 The VAR Model and Problem Formulation

In literature, vector autoregressive (VAR) model is commonly used for modeling networks whose

dynamics are described by multivariate time series [18]:

xt =
m∑

k=1

A(k)xt−k + εt.

In this model, x is a p-dimensional vector with each component being a time series observed

from one node in the network, where p is the number of nodes in the network. And εt is p-

dimensional multivariate Gaussian noise: εt ∼ N (0, Σε). The nodes are connected with each

other through the autoregressive coefficient matrices A(k)’s, and their dynamics are influenced by

each other through A(k)’s. The VAR model will be generally more powerful in modeling complex

dynamic networks with a larger order m. Nevertheless, for most of practical purposes, it is suffi-

cient to use a first-order VAR model to approximate the network behaviors. Hence, we will mainly

consider the first-order VAR model:

xt = Axt−1 + εt, (74)

where A = A(1) is the autoregressive coefficient matrix for time lag one. The coefficient matrix

A = {aij}16i,j6p describes a weighted digraph that represents the dynamic network: there is a

connection link from node j to node i with weight aij . We call this graph the connection graph

of the network. In econometrics and bioinformatics, this kind of connection is called Granger

causality [25], since it illustrates the causal relationship between two nodes.

3.2.1 Conditional Maximum Likelihood Estimation of VAR

Given n observations of the dynamic network X : {xt}n
t=1, we wish to infer the connection graph,

i.e., to estimate A. Assuming a stationary process, we can write the likelihood function of A as

L(A|x1, · · · ,xn) = f(x1, · · · ,xn|A)

=
n∏

t=2

f(xt|xt−1, · · · ,x2,x1, A)f(x1|A)

=
n∏

t=2

f(xt|xt−1, A)f(x1|A).

29

The last but one equation comes from the chain rule of conditional probability. The last equa-

tion comes from the Markov-chain property. For simplicity, we consider the conditional likelihood

function where x1 is assumed to be not random:

Lc(A) =
n∏

t=2

f(xt|xt−1, A)

=
n∏

t=2

(2π)−p/2|Σε|−1/2exp{−1

2
(xt − Axt−1)

T Σ−1
ε (xt − Axt−1)}.

We further assume independent multivariate Gaussian noise with the same variance, which

means Σε = σI . Then the conditional maximum likelihood estimation (CMLE) can be obtained

by solving

ÂCMLE = arg min
A

1

2

n∑
t=2

‖xt − Axt−1‖2
2

= arg min
A

1

2
‖Y − AX‖2

F (
∆
= f(A)),

(75)

where Y = [x2,x3, · · · ,xn], and X = [x1,x2, · · · ,xn−1]. We can see that the conditional max-

imum likelihood estimate of a VAR model is actually the same with its ordinary linear regression

estimate. On the other hand, the exact maximum likelihood estimate requires solving for a nonlin-

ear optimization problem, which is computationally expensive and will not be discussed in detail

in this paper.

3.2.2 Penalized Estimation and the Berhu Penalty

The conditional maximum likelihood estimate ÂCMLE is a dense matrix, which corresponds to a

complete or nearly complete connection graph. Such a graph is difficult to interpret, and usually

does not agree with the reality. As aforementioned, a sparse connection graph is expected for many

scenarios. In other words, we are expecting a sparse estimate of A.

The most direct idea to obtain a sparse solution is to add a constraint on ‖A‖0 in (75) and solve

Â = arg min
A

f(A)

s.t. ‖A‖0 6 c,
(76)

30

where ‖A‖0 is the L0 norm of A, which stands for the number of nonzero elements in A, and c is a

positive integer that satisfies c 6 p2. It is easy to verify that this integer programming problem is

NP-hard [26]. Hence, researchers turn to its Lagrange form:

Â = arg min
A

f(A) + λ‖A‖0.

However, due to non-continuity, this problem is still difficult to address. Therefore, researchers

propose to use other penalty functions to approximate the L0. And this leads to the general form

of penalized linear regression estimation (PLRE):

ÂPLRE = arg min
A

f(A) + P (A; λ). (77)

In this paper, we only consider the additive penalties. And for convenience, we denote P (A; λ) =
∑p

i=1

∑p
j=1 P (aij; λij), where P (•) is a penalty function applied to each component of the regres-

sion coefficient aij , and λij is the corresponding regulation parameter(s). Such a penalty function

is designed to enforce a certain kind of sparsity on Â. Hence, (77) aims at obtaining a solution that

not only gives a small regression error but also has a sparse structure.

Different penalties have been proposed and studied. The famous Lasso [27] essentially solves

the L1 penalty. It is easy to solve thanks to its convexity. However, Lasso suffers from several

drawbacks, such as inconsistency, biasness and incapability of dealing with collinearity. The hard

penalty function [28] is designed to mimic the L0 penalty. It does not introduce bias, but suf-

fers instability in variable selection due to non-continuity. Besides penalty functions with a single

thresholding parameter, researchers also propose a variety of hybrid penalties with multiple regu-

lation parameters. Examples include the elastic net [29], the SCAD [30] and the hybrid TISP [31].

In this paper, we are going to adopt a new hybrid penalty Berhu. Berhu gains its name from

Huber [32], which is a famous function for robust regression. The Huber function (78) is quadratic

in the small variables and linear in the larger ones. When used as a criterion function for regression,

the Huber function is only linearly increased by the large errors, which makes it more robust

to outliers than the squared-error criterion. Inspired by Huber function, [33] designed a penalty

function called “Berhu” (79). As implied by its name, Berhu is a reversed version of Huber: it

is linear in small variables and quadratic in larger ones. Figure 9 shows an example of the two

functions.

HM(θ) =

{
θ2 if |θ| 6 M

2M |θ| −M2 if |θ| > M
(78)

31

PB(θ; λ,M) =

{
λ|θ| if |θ| 6 M

λ θ2+M2

2M
if |θ| > M

(79)

Figure 9: Example of Huber and Berhu.

The Berhu penalty seems quite similar to the elastic net, which also uses both L1 and L2 penal-

ties. However, since the elastic net only simply enforces both the L1 and L2 penalties simultane-

ously despite the value of the variable, the singularity of the penalty function at zero is mitigated to

some extent by the L2 part, which may lead to an estimate that is not parsimonious enough. Berhu

overcomes this drawback by separating the L1 and L2 terms based on the value of the variable.

It puts L1 penalty on the smaller elements, which guarantees sparsity, and puts L2 penalty on the

larger elements, which deals with the collinearity in a similar way with ridge regression [34]. Thus,

Berhu not only preserves the singularity property of Lasso at zero but also has the advantages of

ridge regression in dealing with high collinearity and high noise level. Compared with SCAD and

hybrid TISP, Berhu enjoys favorable properties of convexity. For example, path-wise warm start

can be used when tuning regularization parameters. This can save a lot of computation, which

makes Berhu more suitable than nonconvex penalties for large-scale problems.

3.2.3 Sparse and Stationary Estimation of the VAR Model

Stationarity is an important property for VAR model. Stationary and nonstationary VAR processes

behave fundamentally in different fashions, which can be seen from Figure 10. The probability

distribution of observations from a stationary VAR process is invariant with respect to the shift

32

in time. That is, f(xt1 ,xt2 , · · · , xtn) = f(xt1+l,xt2+l, · · · ,xtn+l) for arbitrary t1, t2, · · · , tn, all

n and l = 0,±1,±2, · · · . While in the nonstationary process, we can see clearly drifting and

trending behaviors. In practice, we often come across stationary VAR processes. Even when the

Figure 10: Example of stationary and nonstationary VAR processes. The number of nodes is

p = 50. The stationary VAR process has ρ(A) = 0.95, and the nonstationary VAR process has

ρ(A) = 1.05.

original process is nonstationary, we can reduce it to a stationary one through some preprocesses,

such as differencing the time series and removing the common trend. Therefore, the input to

an estimation algorithm is usually a series of stationary observations. As has been shown, the

conditional maximum likelihood estimate and the penalized linear regression estimate are all based

on the assumption that the VAR process is stationary. So it is natural to require the estimate to also

be stationary. However, as will be shown in the experiment, due to estimation bias and error, the

penalized linear regression estimate ÂPLRE may violate the stationarity condition. Hence, we need

to take stationarity into consideration and reformulate the estimation problem.

33

For the stationarity property to hold for the VAR model (74), The spectral radius of A should

satisfy the stationarity condition:

ρ(A)
∆
= max

i
|αi| < 1, (80)

where αi is the ith eigenvalue of A [18]. Therefore, we add the stationarity condition to the

penalized linear regression estimation for VAR model:

Â = arg min
A

1

2
‖Y − AX‖2

F + PB(A; λ, M) (
∆
= l(A))

s.t. ρ(A) < 1.

(81)

In general, the penalty function in (81) can be any penalties we discussed before. We focus

on the Berhu penalty PB(•) just in favor of its advantages in estimating VAR model. The most

challenging part of this problem is the constraint on the spectral radius ρ(Â), since ρ(Â) is a

nonconvex and non-Lipschitz-continuous function of a generally nonsymmetric matrix A [35].

Hence, we consider a convex relaxation of (80):

‖A‖2 6 1, (82)

where ‖A‖2 is the spectral norm (induced 2-norm) of A. Then problem (81) can be reformulated

as

Â = arg min
A

l(A)

s.t. ‖A‖2 6 1.
(83)

Throughout this paper, we will call (82) the stationarity constraint, and work on solving the

above problem.

3.2.4 Equivalent Formulations

Problem (83) is a nonsmooth constrained convex optimization problem, which can be reformulated

and then solved by some well-known optimization algorithms, such as semidefinite programming,

projected subgradient method and the alternating direction method of multipliers. Before propos-

ing BIPS, we first discuss briefly about these methods.

34

Semidefinite Programming It can be proved that

‖A‖2 6 1 ⇔
[

I A
AT I

]
º 0.

Hence, problem (83) can be reformulated as a semidefinite programming(SDP) problem:

Â = arg min
A

l(A)

s.t.

[
I A

AT I

]
º 0.

However, since most of the general SDP solvers use interior point methods, they suffer from

very high time complexity and space complexity, especially for large-scale problems [36]. We tried

popular SDP solvers SeDuMi [37] and SDPT3 [38] for problem (84) using MATLAB7.11.0 on a

PC with 4GB memory. When the network size p = 100, the program would run out of memory.

Projected Subgradient Method The projected subgradient method (PSGM) is proposed to

solve constrained convex optimization with nonsmooth objective functions [39]. Define the sub-

gradient of the objective function l(A) at A as

∂εl(A) = ∇f(A) + ∂εPB(A; λ,M),

where ∂εPB(A; λ,M) is the ε-subdifferential of PB(•) at A, which is defined by [39]. And∇f(A)

is the gradient of f(A) at A: ∇f(A) = (AX−Y)XT . Unlike gradient, which is an exact value for

a given point, the subgradient consists of a set of values. Any element in this set is a valid choice

for the subgradient.

The PSGM for problem (83) can be described as follows. At each point, we choose a direction

Uk from the set of the subgradient ∂εl(A), take a step along the opposite direction with a step size

αk, and arrive at a tentative point. Then we project this tentative point to the feasible convex set.

We continue like this until reaching a point where 0 is in the subgradient set. The step size αk

should satisfy
∑∞

k=0 αk = ∞ and
∑∞

k=0 α2
k < ∞.

For problem (83), the feasible convex set is given by the stationarity constraint:

C = {A : ‖A‖2 6 1}. (84)

The projection ΠC(A) can be done easily. We take the singular value decomposition (SVD) of

A, truncate the singular values that are larger than 1 to 1, and then transfer back to get ΠC(A)

(Appendix A). This operation is called SVD projection.

35

PSGM is simple to implement. However, due to the uncertainness of the subgradient at the

non-differentiable point of the penalty function, it suffers from slow convergence and insufficiency

of sparsity.

Alternating Direction Method of Multipliers The alternating direction method of multipliers

(ADMM) is a method based on the dual ascent method and the augmented lagrangian method [40].

The basic idea is to split the objective function and variables into two parts, and update them in an

alternating fashion. To apply ADMM for solving problem (83), we reformulate the problem as

min g1(A) + g2(B)

s.t. A−B = 0

A ∈ C,

where g1(A) = 1
2
‖Y − AX‖2

F , and g2(B) = PB(B; λ,M).

The augmented lagrangian can be written as

Lρ(A,B, Γ) = g1(A) + g2(B) + Γ ◦ (A−B) +
ρ

2
‖A−B‖2

F , (85)

where “◦” denotes the Hadamard product, Γ is the lagrangian multipliers and ρ is the augmented

Lagrangian parameter.

The iteration of ADMM for solving (85) consists of the following steps

Ak+1 = arg min
A∈C

Lρ(A,Bk, Γk), (86a)

Bk+1 = arg min
B

Lρ(A
k+1, B, Γk), (86b)

Γk+1 = Γk + ρ(Ak+1 −Bk+1). (86c)

The A-minimization step (86a) can be solved by projected gradient method, which requires

inner iterations at each step. The B-minimization step (86b) is solved by subdifferential calculus.

According to theoretical analysis and experiment, ADMM also suffers from slow convergence and

huge computation if high accuracy is expected.

Having discussed the equivalent formulations and solutions for problem (83), we find a more

efficient algorithm is in great need. Therefore, we propose a novel algorithm, the Berhu iterative

sparsity pursuit with stationarity constraint (BIPS) in the following section.

36

3.3 The BIPS Framework

To solve problem (83) efficiently, we first introduce the thresholding rule and iterative solution for

Berhu, and then propose the BIPS framework.

3.3.1 The Thresholding Rule for Berhu

Following a three-step procedure [31], we can construct the corresponding thresholding rule of the

Berhu penalty (79):

TB(θ; λ,M) =

0 if |θ| < λ

θ − λsgn(θ) if λ 6 |θ| 6 λ + M
θ

1+λ/M
if |θ| > λ + M.

It can be seen clearly that L1 penalty is put on the variables which are less than λ+M (the first

two cases), and L2 penalty is put on the variables which are larger than λ+M (the third case). We

let η = λ/M and rewrite TB(•) as

TB(θ; λ, η) =

0 if |θ| < λ

θ − λsgn(θ) if λ 6 |θ| 6 λ + λ/η
θ

1+η
if |θ| > λ + λ/η.

This form of TB(•) shows that the Berhu penalty does simultaneous selection and shrinkage

controlled by a thresholding parameter λ for the L1 penalty and a ridge parameter η for the L2

penalty. The threshold for choosing L1 or L2 is determined jointly by λ and η. Thanks to the smart

combination of the L1 and L2 penalties, Berhu not only does selection in a similar fashion with

Lasso, but also has the ability to deal with collinearity and high noise level. Figure 11 shows the

penalty function and thresholding rule of Berhu, in contrast with Lasso (L1) and Ridge (L2) penalty.

Note that the soft thresholding corresponds to Lasso. And the ridge thresholding is actually a

“shrinking” operation.

Having constructed the thresholding rule for Berhu, we can now use iterative thresholding

procedure [41] to solve penalized linear regression (77) with Berhu penalty, which we call the

Berhu sparsity pursuit:

ÂBerhu = arg min
A

f(A) + PB(A; λ,M). (87)

37

Figure 11: Penalty functions and corresponding thresholding rules. λ = 0.2, M = 1.3.

Starting from an initial estimate, we update the estimate and apply the thresholding rule:

Ak+1 = TB(Ak + XY T −XXT Ak; λ, η). (88)

This procedure goes on iteratively until convergence. Throughout the iteration, some of the

entries of the estimate will be shrunk to exactly zero. And the thresholding procedure acts like it is

“selecting” the variables that should have nonzero coefficients. Therefore, variable selection and

estimation are achieved simultaneously.

It can be proved that, for an arbitrary matrix X , given it is properly preliminarily scaled (X ←
X/k0), the iterative procedure can reach the global minimum of the penalized objective function

(Appendix B).

It is required that k0 > ‖X‖2/
√

2 for convergence guarantee. On the other hand, experience

indicates that smaller k0 leads to faster convergence. Therefore, we choose k0 = ‖X‖2/
√

2 in

practice. Moreover, a relaxation form of the iterative procedure can be used to further speed up

the convergence, as given in (89). According to our experience, the number of iterations can be

reduced by about 40% compared to the original form if we choose ω = 2.

A k+1 = (1− ω)A k + ω(Ak + XY T −XXT Ak),

Ak+1 = TB(A k+1; λ)
(89)

38

Unlike PSGM or ADMM, where sparsity and computation speed are hurt by the uncertainness

of subdifferentials, the iterative thresholding procedure keeps selecting variables in a determinate

fashion, which contributes to fast convergence and sufficient sparsity.

3.3.2 The BIPS Algorithm

Based on the iterative thresholding procedure, we now introduce the BIPS algorithm, where sta-

tionarity is addressed. As described by Algorithm 1, the BIPS algorithm consists of two stages.

The first stage solves the Berhu sparsity pursuit (87) and gives an estimate Â. We check if the

stationarity condition (80) is satisfied by Â. If it is satisfied, we accept and output this solution.

Otherwise, we go to the second stage, where we run the iterative procedure again, with a stationar-

ity constraint (82) added in each iteration. That is, at each iteration, we project the updated estimate

Ak+1 onto the convex set (84). Note that X is normalized and preliminarily scaled before running

BIPS, so we need to scale A accordingly before and after the SVD projection. This is done by

operations scale and scaleBack in Algorithm 1.

In the BIPS algorithm, both the stationarity condition (80) and its convex relaxation, the sta-

tionarity constraint (82), is used. In the first stage, we use the stationarity condition to check if

the estimate given by Berhu sparsity pursuit is stationary; In the second stage, we consider the

stationarity constraint and solve (83), which guarantees a stationary estimate. The reason we keep

both stages is that (82) is a sufficient but not necessary condition for (80). Therefore, it may put

a too strong constraint on the solution. If we only run the first stage, stationarity is not guaran-

teed. If we only run the second stage, some estimates that do not violate the stationarity condition

may be modified by the stationarity constraint, which leads to a larger estimation error. While

by combining the two stages together, BIPS not only guarantees stationarity, but also ensures the

identification and estimation accuracy. It may at first sight seem quite time consuming to run two

iterative procedures. However, for a stationary model, the probability for the Berhu sparsity pur-

suit to violate the stationarity condition is actually very small. For most of the cases, the algorithm

does not need to run the second stage. Therefore, the average running time of BIPS is in the same

order with the Berhu sparsity pursuit.

39

Algorithm 1 The Berhu iterative sparsity pursuit with stationarity constraint (BIPS)
Input: X = [x1, x2, · · · , xn−1], normalized rowwisely and preliminarily scaled

Y = [x2, x3, · · · , xn], centered rowwisely

regularization parameters: λ, η

relaxation parameter: ω

stopping criterions: δ, M

initialization for the estimate: A0

{Definition of two operations: scale and scaleBack.

scale: rowwise normalization and preliminary scaling, as has been done to X .

scaleBack: inverse operation of scale.}
1.

2. First run:
3. k = 0; A 0 = A0;
4. repeat

5. A k+1 = (1− ω)A k + ω(Ak + XY T −XXT Ak);{update with relaxation}
6. Ak+1 = TB(A k+1; λ, η);{thresholding rule for Berhu}
7. k = k + 1;

8. until ‖Ak+1 − Ak‖F 6 δ or k > M

9. Â = scaleBack(Ak+1);
10.

11. Check stationarity:

12. if ρ(Â) < 1 then
13. go to output; {stationarity constraint satisfied. no need for second run}
14. end if
15.

16. Second run:

17. k = 0; A 0 = A0 = scale(Â);

18. repeat

19. A k+1 = (1− ω)A k + ω(Ak + XY T −XXT Ak);{update with relaxation}
20. Ak+1 = TB(A k+1; λ, η); {thresholding rule for Berhu}
21. Ak+1 = scaleBack(Ak+1);

22. Ak+1 = ΠC(Ak+1); {SVD projection}
23. Ak+1 = scale(Ak+1);

24. k = k + 1;

25. until ‖Ak+1 − Ak‖F 6 δ or k > M

26. Â = scaleBack(Ak+1);
27.

Output: Â

40

3.3.3 Thresholding-based Iterative Screening

Nowadays, a great challenge for network inference and statistical learning comes from the large

scale of the system, such as world wide web and human genome program. The huge dimensionality

p requires the algorithm to have nice scalability. Moreover, we may only be able to obtain just a

short snapshot of the system, either because the measurement is too expensive or time consuming,

or simply because long time measurement is impossible. Therefore, the “large p small n” problem

has become a hot topic [42].

When p À n, with the assumption that the number of nonzero elements is far smaller than

n, we can apply screening techniques to coarsely select the variables before finer estimation. For

example, if we are sure that the number of connections for each node is much less than µn (say

µ = 0.8), we can first use screening technique to select µn candidate nodes, and then apply BIPS

on them for further selection and estimation. Since BIPS is efficient for relatively low dimensional

data, we save a lot of time by doing screening first, as long as the screening technique is suffi-

ciently fast and accurate. Here we propose the thresholding-based iterative screening (TIS) for

VAR model, given in Algorithm 2.

As implied by its name, TIS depends on an iterative selecting procedure. However, it does

not select variables using a given thresholding parameter λ. Instead, TIS keeps a fixed number s

(s = µnp) of nonzero elements at each iteration. To be specific, at the (k + 1)th iteration, we find

the sth largest element of the updated estimate Ak+1, use it as the current thresholding parameter

λk+1, and apply the thresholding function onto the estimate: Ak+1 = TB(Ak+1; λk+1, η). (Note

that though we use Berhu here, the algorithm can be generalized easily to other penalties.) In this

way, after each iteration, we obtain an estimate with exactly s nonzero elements, which is the s

largest in the updated estimate. Since we only need to obtain the nonzero entries in the screening

stage but care little about the exact value of each element, we can choose a relatively large ξ and

small M . Also, we can use an empirical value for η, instead of running the algorithm with different

values of η and choosing the optimal one. The algorithm’s output S = {sij}16i,j6p is a p×p matrix

recording the entries in Â that are selected by screening. That is, we have

sij =

{
1, if âij 6= 0

0, if âij = 0.
(90)

The sure independent screening (SIS) technique [23] for dimensionality reduction is simple and

fast, but it relies on the assumption that the predictors are independent. Since it only calculates

41

Algorithm 2 Thresholding-based iterative screening (TIS)
Input: X = [x1, x2, · · · , xn−1], normalized rowwisely and preliminarily scaled

Y = [x2, x3, · · · , xn], centered rowwisely

regularization parameters: λ, η

relaxation parameter: ω

stopping criterions: δ, M

initialization for the estimate: A0

expected number of nonzeros: s

1.

2. k = 0; A 0 = A0;
3. repeat

4. A k+1 = (1− ω)A k + ω(Ak + XY T −XXT Ak);{update with relaxation}
5. λk+1 = sth largest element of A k+1; {determine the elements to keep}
6. Ak+1 = TB(A k+1; λ, η); {force other elements to be zero}
7. k = k + 1;

8. until ‖Ak+1 − Ak‖F 6 δ or k > M

9. Â = Ak+1;
10.

11. let S be a p× p matrix, and

sij =

{
1, if âij 6= 0

0, if âij = 0
;

12.

Output: S

42

the marginal correlation between Y and X , and chooses the variables accordingly. On the other

hand, TIS is more powerful than SIS in dealing with collinearity. This can be seen from the update

step of the algorithm, where the information of the correlation matrix XXT is introduced into the

calculation. Although TIS sacrifices some computation time due to the iteration, the great gain in

selection accuracy is still worthwhile.

After screening, we can apply BIPS on the reduced model. To achieve this, we just need to

add one step in the iteration of BIPS, which confines the updated estimate to the reduced model.

That is, after the updating step (line 5 and line 19 in Algorithm 1), we only keep the entries that

are selected in the screening stage by letting

ak+1
ij =

{
ak+1

ij , if sij = 1

0, if sij = 0.

3.3.4 Tuning Strategy

The are two regularization parameters λ and η in BIPS that need tuning. Since the estimate is

not quite sensitive to the ridge parameter η, it is not necessary to run a full two-dimensional grid

search to look for the best parameters. Instead, we search along a couple of one-dimensional

solution paths including the λ-paths (with η fixed) and the η-paths (with λ fixed). Based on our

experience, the following “1-3-1” strategy works well:

Step 1 : run the first ridge path (λ = 0). Do ridge regression with different values for the ridge

parameter η, and get the optimal ridge parameter η∗ as a reference of the λ-paths.

Step 2 : run 3 λ-paths with η = 0.5η∗, 0.05η∗, 0, 005η∗ respectively. For each value of η, run

BIPS with a number of values for λ, and find the optimal λ∗. Then we will have three λ∗’s, one

from each path. Choose the one that gives the smallest prediction error and let it be the optimal

thresholding parameter λ∗∗.

Step 3 : run the final η-path with λ∗∗. Choose the optimal ridge parameter η∗∗ along the path.

The (λ∗∗, η∗∗) is our final choice of the two parameters.

A proper criterion is needed for choosing the optimal parameter at each step. As is well known,

if we simply use the squared fitting error to be the criterion, it easily leads to overfitting, especially

when the number of observations is limited. Moreover, on the path there are sparse solutions, so

we need a criterion that considers different sparsity patterns. For Step 1, we use AIC to choose the

optimal ridge parameter [43]. For Step 2 and Step 3, we adopt the K-fold selective cross-validation

43

(SCV) score as the tuning criterion [31]. Here we denote the parameter to be tuned as ω (it can be

the thresholding parameter λ or the ridge parameter η). First, we apply the BIPS algorithm to the

whole dataset along an ω-path, obtaining the solutions Â(ω)’s and the associated sparsity patterns

nzω = nz(Â(ω)). Second, we apply K-fold SCV to Â(ω) for each ω: for each fold, we run a

simple ridge regression on the training data with only the predictors picked by nzω, and record the

prediction error from the testing data. The averaged prediction error of the K folds is defined to

be the SCV score for the corresponding value of ω. Finally, we determine the optimal value ωopt

as the one that gives the smallest SCV score along the path.

3.4 Bootstrap Enhanced Learning

The “TIS+BIPS” framework proposed in Section 3 is a powerful tool for sparse and stationary

estimation of VAR model in the “large p small n” scenario. However, a “one-time” estimate,

without p-value or confidence interval, may not be trustworthy in practice. Bootstrap [44] is a

powerful nonparametric tool for approximating the distributions of statistics, confidence intervals,

or rejection probabilities of tests. It resamples the data and recalculates the statistics using the

resampled data. From the recalculated statistics, we can estimate the distributions of interest and

construct confidence intervals. Hence, we propose the bootstrap enhanced BIPS (BE-BIPS), which

provides a measure of the confidence about weather a connection exists in the VAR model.

3.4.1 The BE-BIPS Framework

Assume that the connections between two arbitrary nodes in the network follows a distribution that

aij

{
= 0, with probability 1− ξij

6= 0, with probability ξij.

By bootstrapping, we can approximate this distribution and obtain the empirical value for ξij . The

BE-BIPS framework is described as follows:

Step 1 : run BIPS over the original dataset X . Record the pattern of Â, which is a p× p matrix

P , defined in the same way as S in (90).

Step 2 : Draw a bootstrap sample X ∗ from the original data. Repeat Step 1 for X ∗.

Step 3 : Repeat Step 2 for B times. And record the pattern P ∗
j for the jth bootstrap sample.

44

Adding up all the patterns P ∗
j ’s and normalizing it by B, we define the matrix E = {eij}16i,j6p

of connection existence probability:

E =
1

B

∑
B

P ∗
j .

Given a sufficiently large B, the connection existence probability eij is a good approximation

of ξij , which can serve as a measure of how confident we are about the existence of each possible

connection in the network. For example, if eij = 82%, it means that in 82% of the bootstrap

samples, a connection is identified from node j to node i. So we can say the probability for

the existence of this connection is approximately 82%. Given the probability matrix E, we can

enforce a threshold e∗ on the connection existence probability, and choose only the connections

with eij > e∗ for further study.

The outcome of BIPS can be viewed as a sparse weighted digraph, with the weight of an edge

being the regulation strength. On contrast, the outcome of the BE-BIPS is a complete weighted

digraph, with the weight of an edge being the probability of its existence.

3.4.2 Stationary Bootstrap

There are different resampling schemes to draw bootstrap samples from the original data in Step 2.

If the observations are independent and identically distributed, we can resample the data randomly

with replacement [44]. When the observations are time series, the problem are more complicated,

since the observations are largely dependent on each other, and we would like to keep this depen-

dent information when doing bootstrap. To preserve the temporal dependent structure of the data,

techniques such as resampling blocks of consecutive observations or resampling “blocks of blocks”

are proposed for bootstrapping time series [45]. The basic idea of block bootstrap methods is that,

though individual observations may be dependent, blocks of observations can be approximately

independent with each other given a proper block size l.

When the time series is stationary, it is natural to require the pseudo time series obtained by

the resampling scheme to be also stationary. The stationary bootstrap [24] is a bootstrap method

with this property. It is based on resampling blocks of random length, where the length of each

block follows a geometric distribution with mean 1/τ . There is a simple method to conduct such

resampling. Given that x∗i is chosen to be the J th observation xJ in the original time series, we

45

choose x∗i+1 based on the following rule:

x∗i+1 is

{
chosen to be xJ , with probability 1− τ

picked randomly from {xt}n
t=1, with probability τ .

Similarly with block bootstrap, where the block size l has to be determined, the value of τ

should be chosen properly. Good news is that the sensitivity of τ in stationary bootstrap is less

than that of l in block bootstrap.

3.5 Experiment

3.5.1 Performance Measures

To examine the performance of the proposed methods, we define the following measures.

Violation Percentage (Pvio): In T repeated experiments, if there are Tvio experiments in which

the estimate Â violates the stationarity condition (80), then the violation Percentage is defined as

Pvio = Tvio/T .

Miss Probability (Pmiss): If aij 6= 0, âij = 0, we say there is a miss. Denote Cmiss as the

total number of misses and let Cnz be the number of nonzero entries in A. The Miss Probability is

defined as Pmiss = Cmiss/Cnz.

False Alarm Probability (Pfa): If aij = 0, âij 6= 0, we say there is a false alarm. Denote Cfa

as the total number of false alarms and let Cz be the number of zero entries in A. The false alarm

Probability is defined as Pfa = Cfa/Cz.

Prediction Error (prdErr): The prediction error is defined as prdErr = ‖Y T
test−XT

testÂ‖F /ntest,

where Y T
test and XT

test is the testing data, and ntest is the length of the testing data.

Running Time (runTime): The averaged running time of an algorithm. All the algorithms are

run in MATLAB7.11.0 on a PC with 4GB memory.

3.5.2 Experiment Settings

We generate the p× p autoregressive coefficient matrix A with both sparsity and stationarity prop-

erties. First, the topology is generated from a directed random graph G(p, ξ), where the edge

from one node to another node occurs independently with probability ξ. Then, the strength of the

46

edges is generated independently from a Gaussian distribution. This process is repeated until we

obtain a matrix A that has the desired spectral radius ρ(A). For all the experiment result shown,

ξ = 0.05, ρ(A) = 0.99.

For a λ-path, we use a grid of 100 values for λ, which is picked from the interval [0, ‖A0 +

XY T −XXT A0‖∞]. The initial estimate is simply set as A0 = 0. For a η-path, we use a grid of

76 values for η, which is picked from the interval [2−10, 25]. The number of folds for SCV is set to

be K = 5. We examine the experiment results for different combination of network size p, sample

size n, and noise level σ.

All the statistics we collect are values averaged over 100 repeated experiments.

3.5.3 Performance of BIPS

Table 3.5.3 compares the performance of Lasso, Berhu, and BIPS. Here, by Lasso and Berhu,

we mean the penalized linear regression estimates given by the L1 penalty and the Berhu penalty,

respectively.

Comparing the Pvio’s, we see that it is possible for the penalized linear regression, no matter

Lasso or Berhu is used for penalty, to give a nonstationary estimate for a stationary model. While

the proposed BIPS algorithm can guarantee the stationarity property of Â. Therefore, adding the

stationarity constraint into the sparsity pursuit does effectively prevent the estimate from becom-

ing nonstationary. Moreover, Berhu outperforms Lasso in both selection accuracy and estimation

accuracy, which proves the advantages of Berhu over Lasso. When p > n, there is definitely high

collinearity in the data matrix X . In this situation, Berhu can do better than Lasso thanks to the L2

term in the penalty function.

To further illustrate the disadvantages of a nonstationary estimate, we examine its dynamic

behavior by looking at the sample paths. For better illustration, we choose a small network size

p = 20. And n = 100, σ = 1. From the repeated experiment, we find one run where Lasso gives a

nonstationary estimate ÂLasso. Starting from a time point, we observe a sample path from the true

model for 100 time points. Then we start from the same initial state and calculate the sample paths

for the next 100 time points using both ÂLasso and ÂBIPS . The sample path of the true model and

those of the two estimated models are plotted in Figure 12. We can easily see that ÂBIPS gives

a reasonable imitation of the true system. However, the nonstationary estimate ÂLasso blows up

quickly and behaves completely different from the true model. This tells us that guaranteeing a

47

p/n/σ algorithm Pmiss Pfa prdErr Pvio

100/50/1
Lasso 0.213 0.139 2.166 0.02
Berhu 0.185 0.177 2.079 0.04
BIPS 0.186 0.175 2.075 0

100/50/10
Lasso 0.211 0.135 19.244 0.01
Berhu 0.188 0.170 19.224 0.02
BIPS 0.188 0.170 19.223 0

100/80/1
Lasso 0.177 0.189 1.656 0.01
Berhu 0.157 0.122 1.553 0.01
BIPS 0.157 0.121 1.553 0

100/80/10
Lasso 0.186 0.194 16.912 0.02
Berhu 0.169 0.126 15.639 0.03
BIPS 0.170 0.124 15.623 0

Table 2: Performance comparison of Lasso, Berhu, and BIPS

p/n=300/80 p/n=400/80 p/n=500/80
TIS 0.229 0.308 0.377
SIS 0.491 0.537 0.579

Table 3: Pmiss of TIS and SIS

stationary estimate is indeed crucial.

3.5.4 Performance of TIS

To examine TIS’s performance for dimensionality reduction and variable selection, we first com-

pare it with the SIS method by looking at the Pmiss of the two methods. That is, to the same set

of data, we apply SIS and TIS separately and compare the patterns obtained by them with the true

topology. We let µ = 0.9 in the experiment. Table 3.5.4 shows the result under different (p, n)

combinations. We can see that TIS has a much smaller Pmiss than SIS.

Now we run BIPS with and without TIS and check the difference of the performance. We set the

noise level σ = 1, and compare the two algorithms under different p/n ratios. From table 3.5.4,

we can see that, when p/n ratio is large enough, adding TIS not only improves the estimation

accuracy, but also saves a lot of time. As the ratio becomes larger, the improvement becomes more

significant. On the other hand, when p/n ratio is too large, even TIS fails to be satisfactory. And

this is an important motivation for using the bootstrap enhanced learning method.

48

Figure 12: Comparison of Patterns and Sample Paths. Top: pattern of A and observations from the

true model; Middle: pattern of ÂBIPS and sample path from the corresponding stationary model;

Bottom: pattern of ÂPLASSO and sample path from the corresponding nonstationary model.

3.6 Application to U.S. Macroeconomic Data

We apply the proposed learning framework to the U.S. macroeconomic data. The dataset con-

sists of quarterly observations on 108 macroeconomic variables from 1960:I to 2008:IV, which

belong to 12 categories. The dataset with detailed description can be found on "http://www.

49

p/n algorithm Pmiss Pfa prdErr runTime

300/80
TIS+BIPS 0.288 0.072 0.985 1216

BIPS 0.284 0.073 0.987 1363

400/80
TIS+BIPS 0.379 0.058 1.234 1153

BIPS 0.423 0.050 1.321 3091

500/80
TIS+BIPS 0.473 0.045 1.601 1747

BIPS 0.529 0.040 1.727 5457

Table 4: Performance of TIS

princeton.edu/˜mwatson/wp.html". The data has been preprocessed so that each time

series is a stationary process. The stationary and sparse VAR model can be used to identify the

Granger causal relationships between different variables.

3.6.1 Comparison of Rolling MSE

First, we use Rolling forecast to compare the performance of Lasso and BIPS. Rolling forecasting

procedure [46] is commonly used in macro forecasting. Define the rolling window size to be w.

Standing at time point t0, apply the estimation algorithm to the most recent w observations in the

past, i.e., observations from time t0 − w + 1 to t0: {xt}t0
t=t0−w+1. Then use this estimated model

to forecast xt+h. This forecasting procedure is repeated as the rolling window slides from the

beginning of the time series to the end. Denote the forecast for xt+h as x̂t+h. The rolling MSE is

defined as MSErolling = 1
n−h−w+1

∑n−h
t=w ‖xt+h − x̂t+h‖2

2.

We first study the dataset by category. To each of the 12 categories, we apply Lasso and

BIPS respectively with h = 1, w = 0.8 × d, where d is the number of time series. Table 3.6.1

shows the rolling MSE of Lasso and BIPS, normalized by that of the AR(4) benchmark, which is

a conventional benchmark of macro forecasting. We use the same window size for AR(4) model

as the VAR model.

Compared with the AR(4) model, both Lasso and BIPS, which solve a VAR model, have ob-

tained a much smaller forecasting error, except for Category 7. The reason is that, by introducing

the Granger causal interactions between different indices, the VAR model becomes more powerful

than the univariate AR model in modeling and forecasting, given the same amount of observa-

tions. The exception of Category 7 may be due to the higher order of the univariate AR model.

Or maybe the Granger causal relationships among Category 7 are weak. The variables are more

self-regulated.

50

Category 1 2 3 4 5 6
Lasso 0.589 0.846 0.936 0.289 0.071 0.506
BIPS 0.445 0.576 0.711 0.165 0.033 0.217

Category 7 8 9 10 11 12
Lasso 1.971 0.552 1.443 0.114 0.370 0.254
BIPS 1.874 0.207 0.738 0.065 0.107 0.100

Table 5: Normalized Rolling MSE of Lasso and BIPS for each category

h 1 2 4 8 16 32
Lasso 0.0174 0.0203 0.0292 0.3647 329.9375 3.1× 108

BIPS 0.0171 0.0184 0.0187 0.0197 0.0198 0.0176

Table 6: Rolling MSE of Lasso and BIPS for different horizons

Moreover, we note that BIPS gives smaller forecasting errors than Lasso for all the 12 cate-

gories of macro time series. It indicates that, by adding a stationarity constraint, we are able to

capture the network dynamics more accurately and achieve a stronger capability of forecasting. To

further support this conclusion, we apply Lasso and BIPS respectively to the whole dataset, with

w = 0.8× d and different horizons h. The rolling MSE for h = 1, 2, 4, 8, 16, 32 is recorded in Ta-

ble 3.6.1. As the horizon increases, the rolling MSE of Lasso grows exponentially, which indicates

that some estimates of Lasso are nonstationary and therefore completely fail to forecast for large

horizons. On the other hand, thanks to the stationarity constraint, the rolling MSE of BIPS stays at

the same order of magnitude. This phenomenon is similar with what is shown by Figure 12. They

have illustrated the fundamental difference of BIPS from the original penalized linear regression

in forecasting capability.

3.6.2 Bootstrap Analysis

We now choose 80 indices for further analysis using stationary bootstrap. We apply the BE-BIPS

to these times series and analyze their Granger causal connections. Since the economic structure

of U.S. has gone through a big change in the “Great Moderation” in mid-1980 [47], we expect to

see significantly different topologies for the macroeconomic network before and after mid-1980.

Hence, we divide the time series into two periods, the pre-Great Moderation period and the post-

Great Moderation period, and apply BE-BIPS separately to the two periods.

For the pre-Great Moderation period, we choose 80 observations which are from 1960:I to

51

Figure 13: Topology of the macroeconomic network in the pre-Great Moderation period.

Figure 14: Topology of the macroeconomic network in the post-Great Moderation period.

1979:IV. For the post-Great Moderation period, we choose 80 observations which are from 1985:I

to 2004:IV. The time series are resampled using the R function tsboot with default parameter values

[48]. The number of bootstrap samples is set to be B = 100. The threshold for the connection

existence probability is chosen to be e∗ = 80%. The topologies we obtained for the pre-Great

52

Moderation period and the post-Great Moderation period are shown in Figure 13 and Figure 14,

respectively. In the figures, only the indices that have connection(s) with others are plotted.

After Great Moderation, the business cycle fluctuations have gone through great reduction

in volatility. And this reduction has been clearly reflected by the topology change. In the pre-

Great Moderation period, the macro variables actively interacted with each other, which forms a

very complex dynamic network. While after Great Moderation, the interactions have remarkably

reduced, making it easier for the network to stay stable.

3.7 Conclusion

In this paper, we study the estimation of the first order stationary and sparse vector autoregressive

(VAR) model. Distinguished from the existing related work, we focus on the stationarity property

of VAR and the “large p small n” scenario. To solve the nonstationarity problem of the penal-

ized linear regression estimation, we consider adding a stationarity constraint, and propose the

BIPS algorithm to give an efficient solution. For “large p small n” problem, we implement the

thresholding-based iterative screening into the BIPS algorithm to improve the identification accu-

racy and computation efficiency. The bootstrap enhanced BIPS is proposed to provide a confidence

measure for each possible connection in the network. The VAR model is widely used in many re-

search domains for time series analysis and network identification. In this paper, we apply it to

the analysis of the U.S. macroeconomic data and make some interesting discovery. The proposed

framework can also be used to infer the brain function connectivity through fMRI data and the

gene regulatory network through microarray data, which will be left for future work.

4 Conclusions

In this project, we have accomplished the research objective of developing transformative theory

and algorithms for robust Automated Target Recognition (ATR). Specifically, we have developed

the following new techniques:

• kernel local feature extraction (KLFE) for ATR applications,

• technique for identifying network dynamics under sparsity and stationarity constraints,

• self-organized-queue-based (SOQ) clustering scheme,

53

• robust principal component analysis (RPCA) based on manifold optimization, outlier detec-

tion, and subspace decomposition.

References

[1] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in ML92: Proceedings

of the ninth international workshop on Machine learning. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1992, pp. 249–256.

[2] D. Wettschereck, D. W. Aha, and T. Mohri, “A review and empirical evaluation of feature

weighting methods for a class of lazy learning algorithms,” Artificial Intelligence Review,

vol. 11, no. 1–5, pp. 273–314, 1997.

[3] Y. Sun and D. Wu, “A relief based feature extraction algorithm,” in Proceedings of SIAM

International Conference on Data Mining, April 2008.

[4] ——, “Feature extraction through local learning,” Statistical Analysis and Data Mining,

vol. 2, no. 1, pp. 34–47, July 2009.

[5] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial Intelligence,

vol. 97, pp. 273–324, 1997.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. Wiley-Interscience,

Oct. 2000.

[7] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel eigen-

value problem,” Neural Computation, vol. 10, pp. 1299–1319, 1998.

[8] T. G. Dietterich, “Machine-learning research: Four current directions,” AI Magazine, vol. 18,

no. 4, pp. 97–136, Dec. 1997.

[9] Y. Sun and J. Li, “Iterative relief for feature weighting,” in ICML ’06: Proceedings of the

23rd international conference on Machine learning. New York, NY, USA: ACM Press,

2006, pp. 913–920.

[10] B. Cao, D. Shen, J. Sun, Q. Yang, and Z. Chen, “Feature selection in a kernel space,” in

Proceedings of the 24th international conference on Machine learning. ACM New York,

NY, USA, 2007, pp. 121–128.

54

[11] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge Uni-

versity Press, June 2004.

[12] D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI repository of machine learning

databases,” 1998. [Online]. Available: http://www.ics.uci.edu/\simmlearn/MLRepository.

html

[13] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,”

Neural computation, vol. 12, no. 10, pp. 2385–2404, 2000.

[14] B. V. Dasarathy, Nearest Neighbor: Pattern Classification Techniques. IEEE Computer

Society, Dec. 1990.

[15] M. E. J. Newman and D. J. Watts, The Structure and Dynamics of Networks. Princeton Uni-

versity Press. Princeton University Press, 2006.

[16] P. Bellec, V. Perlbarg, S. Jbabdi, M. Pelegrini-Issac, J.-L. Anton, J. Doyon, and H. Benali,

“Identification of large-scale networks in the brain using fMRI,” NeuroImage, vol. 29, no. 4,

pp. 1231–1243, Feb. 2006.

[17] T. C. Mills and R. N. MarFkellos, The Econometric Modelling of Financial Time Series,

3rd ed. Cambridge University Press, 2008.

[18] G. Reinsel, Elements of Multivariate Time Series Analysis, 2nd ed. New York, Springer,

1997.

[19] A. Fujita, J. Sato, H. Garay-Malpartida, R. Yamaguchi, S. Miyano, M. Sogayar, and C. Fer-

reira, “Modeling gene expression regulatory networks with the sparse vector autoregressive

model,” BMC Systems Biology, vol. 1, no. 1, 2007.

[20] Y. Ren and X. Zhang, “Subset selection for vector autoregressive processes via adaptive

lasso,” Statistics and Probability Letters, vol. 80, no. 23-24, pp. 1705–1712, Dec. 2010.

[21] J. Fan and R. Li, “Statistical challenges with high dimensionality: Feature selection in knowl-

edge discovery,” 2006.

[22] I. Fodor, “A survey of dimension reduction techniques,” Tech. Rep., 2002.

55

[23] J. Fan and J. Lv, “Sure independence screening for ultrahigh dimensional feature space,”

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 70, no. 5,

pp. 849–911, 2008.

[24] D. N. Politis and J. P. Romano, “The stationary bootstrap,” Journal of the American Statistical

Association, vol. 89, no. 428, pp. pp. 1303–1313, 1994.

[25] M. Ding, Y. Chen, and S. L. Bressler, Granger Causality: Basic Theory and Application to

Neuroscience. Wiley VCH Verlag GmbH Co. KGaA, 2006.

[26] M. Garey and D. Johnson, Computers and intractability: a guide to the theory of NP-

completeness, ser. Series of books in the mathematical sciences. W. H. Freeman, 1979.

[27] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Sta-

tistical Society, vol. 58, no. 1, pp. 267–288, 1996.

[28] T. Blumensath and M. E. Davies, “Normalized iterative hard thresholding: Guaranteed sta-

bility and performance,” IEEE Journal of selected topics in signal processing, vol. 4, no. 2,

April 2010.

[29] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of

the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, pp. 301–320,

2005.

[30] F. J. and L. R., “Variable selection via nonconcave penalized likelihood and its oracle prop-

erties,” Journal of the American Statistical Association, vol. 96, pp. 1348–1360, December

2001.

[31] Y. She, “Thresholding-based iterative selection procedures for model selection and shrink-

age,” Electron. J. Statist, vol. 3, pp. 384–415, 2009.

[32] P. Huber, Robust statistics, ser. Wiley series in probability and mathematical statistics. Prob-

ability and mathematical statistics. Wiley, 1981.

[33] A. B. Owen, “A robust hybrid of lasso and ridge regression,” Tech. Rep., 2006.

[34] A. T.K. and Wan, “On generalized ridge regression estimators under collinearity and balanced

loss,” Applied Mathematics and Computation, vol. 129, pp. 455 – 467, Jul 2002.

56

[35] M. Overton and R. Womersley, “On minimizing the spectral radius of a nonsymmetric matrix

function - optimality conditions and duality theory,” SIAM J. Matrix Anal. Appl., vol. 9, no. 4,

pp. 473–498, Oct 1988.

[36] H. D. Mittelmann, “An independent benchmarking of sdp and socp solvers.” Math. Program.,

vol. 95, no. 2, pp. 407–430, 2003.

[37] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones,”

1998.

[38] R. H. Ttnc, K. C. Toh, and M. J. Todd, “Solving semidefinite-quadratic-linear programs using

sdpt3,” Mathematical Programming, vol. 95, pp. 189–217, 2003.

[39] Y. I. Alber, A. N. Iusem, and M. V. Solodov, “On the projected subgradient method for

nonsmooth convex optimization in a hilbert space,” Mathematical Programming, pp. 23–35,

1998.

[40] S. Boyd, N. Parikh, E. Chu, and J. Eckstein, “Distributed Optimization and Statistical Learn-

ing via the Alternating Direction Method of Multipliers,” Information Systems Journal, vol. 3,

no. 1, pp. 1–118, 2010.

[41] M. Fornasier and H. Rauhut, “Iterative thresholding algorithms,” Applied and Computational

Harmonic Analysis, vol. 25, no. 2, pp. 187–208, Sept. 2008.

[42] M. Zhang, D. Zhang, and M. Wells, “Variable selection for large p small n regression models

with incomplete data: Mapping qtl with epistases,” BMC Bioinformatics, vol. 9, no. 1, p. 251,

2008.

[43] K. P. Burnham and D. R. Anderson, “Multimodel inference: understanding AIC and BIC in

model selection,” 2004.

[44] B. Efron, “Bootstrap Methods: Another Look at the Jackknife,” The Annals of Statistics,

vol. 7, no. 1, pp. 1–26, 1979.

[45] H. R. Kunsch, “The Jackknife and the Bootstrap for General Stationary Observations,” The

Annals of Statistics, vol. 17, no. 3, pp. 1217–1241, 1989.

[46] Makridakis, Wheelwright, and Hyndman, Forecasting: methods and applications. Wiley,

1998.

57

[47] S. J. Davis and J. A. Kahn, “Interpreting the great moderation: Changes in the volatility of

economic activity at the macro and micro levels,” National Bureau of Economic Research,

Working Paper 14048, May 2008.

[48] P. Dalgaard, Introductory Statistics with R (Statistics and Computing), 2nd ed. Springer,

Aug. 2008.

58

